题目大意:又是迷宫啊迷宫啊。鸣人救佐助,一开始手上有一定数量的查克拉,路上遇见大蛇丸的手下,需要耗费一个查克拉杀死对方,才能继续走,然而鸣人能够瞬杀,不耗费时间,只消耗移动距离的时间。没有查克拉,就要避开大蛇丸的手下咯。求最短时间,不能就输出-1。
分析:BFS。每个格子需要记录三个数据,横纵坐标,以及查克拉数量,如果当前查克拉数量,不超过之前经过时的查克拉数量,那就不用走这一步,否则,仍然可以继续走。
代码:
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int maxn = 210;
char g[maxn][maxn];
int G[maxn][maxn];
int m, n, w;
int sr, sc, er, ec;
int dr[4] = {0, 1, 0, -1};
int dc[4] = {1, 0, -1, 0};
struct Node {
int r, c, w, t;
Node(int r, int c, int w, int t) : r(r), c(c), w(w), t(t) {}
};
int main() {
scanf("%d%d%d", &m, &n, &w);
for(int i = 0; i < m; i++) {
scanf("%s", g[i]);
for(int j = 0; j < n; j++) {
G[i][j] = -1; //每个格子的查克拉数量初始化为-1,因为鸣人没有查克拉的时候(即为0),依然可以走这个格子
if(g[i][j] == '@')
sr = i, sc = j;
if(g[i][j] == '+')
er = i, ec = j;
}
}
queue<Node> q;
q.push(Node(sr, sc, w, 0));
G[sr][sc] = w;
int ans = 1 << 30;
while(!q.empty()) {
Node p = q.front();
if(p.r == er && p.c == ec) {
ans = p.t;
break;
}
for(int i = 0; i < 4; i++) {
int tr = p.r+dr[i];
int tc = p.c+dc[i];
if(tr >= 0 && tr < m && tc >= 0 && tc < n && p.w > G[tr][tc]) {
if(g[tr][tc] == '#' && p.w > 0) {
q.push(Node(tr, tc, p.w-1, p.t+1));
G[tr][tc] = p.w-1;
}
else if(g[tr][tc] == '*' || g[tr][tc] == '+') {
q.push(Node(tr, tc, p.w, p.t+1));
G[tr][tc] = p.w;
}
}
}
q.pop();
}
if(ans != 1 << 30) printf("%d\n", ans);
else printf("-1");
return 0;
}