百练6044--鸣人与佐助(BFS)

题目大意:又是迷宫啊迷宫啊。鸣人救佐助,一开始手上有一定数量的查克拉,路上遇见大蛇丸的手下,需要耗费一个查克拉杀死对方,才能继续走,然而鸣人能够瞬杀,不耗费时间,只消耗移动距离的时间。没有查克拉,就要避开大蛇丸的手下咯。求最短时间,不能就输出-1。

分析:BFS。每个格子需要记录三个数据,横纵坐标,以及查克拉数量,如果当前查克拉数量,不超过之前经过时的查克拉数量,那就不用走这一步,否则,仍然可以继续走。


代码:

#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;

const int maxn = 210;
char g[maxn][maxn];
int G[maxn][maxn];
int m, n, w;
int sr, sc, er, ec;
int dr[4] = {0, 1, 0, -1};
int dc[4] = {1, 0, -1, 0};

struct Node {
    int r, c, w, t;
    Node(int r, int c, int w, int t) : r(r), c(c), w(w), t(t) {}
};


int main() {
    scanf("%d%d%d", &m, &n, &w);
    for(int i = 0; i < m; i++) {
        scanf("%s", g[i]);
        for(int j = 0; j < n; j++) {
            G[i][j] = -1;           //每个格子的查克拉数量初始化为-1,因为鸣人没有查克拉的时候(即为0),依然可以走这个格子
            if(g[i][j] == '@')
                sr = i, sc = j;
            if(g[i][j] == '+')
                er = i, ec = j;
        }
    }
    queue<Node> q;
    q.push(Node(sr, sc, w, 0));
    G[sr][sc] = w;
    int ans = 1 << 30;
    while(!q.empty()) {
        Node p = q.front();
        if(p.r == er && p.c == ec) {
            ans = p.t;
            break;
        }
        for(int i = 0; i < 4; i++) {
            int tr = p.r+dr[i];
            int tc = p.c+dc[i];
            if(tr >= 0 && tr < m && tc >= 0 && tc < n && p.w > G[tr][tc]) {
                if(g[tr][tc] == '#' && p.w > 0) {
                    q.push(Node(tr, tc, p.w-1, p.t+1));
                    G[tr][tc] = p.w-1;
                }
                else if(g[tr][tc] == '*' || g[tr][tc] == '+') {
                    q.push(Node(tr, tc, p.w, p.t+1));
                    G[tr][tc] = p.w;
                }
            }
        }
        q.pop();
    }
    if(ans != 1 << 30) printf("%d\n", ans);
    else printf("-1");

    return 0;
}



评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值