题意:n个点组成的一串序列,点只有红色和蓝色两种。对于序列中的每段连续的素数长度的子串,子串中的红色点的数量不能少于蓝色点的数量。求有多少种排列可能。
因为2是最小的素数,考虑长度为2的子串。红色为A,蓝色为B,则只有AA,AB,BA三种情况。对每种情况,在后面加上A或B,AA可以形成AA,AB,AB可以形成BA,BA可以形成AA。通过这个递推扩展到长度为n的情况,用矩阵快速幂加速即可。矩阵为:
初始情况下,AA,AB,BA都有可能,因此最后将矩阵中的所有数字相加就是答案,注意要模除mod。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define ll long long
const int mod = 1000000000 + 7;
struct Matrix
{
ll a[5][5];
void clear()
{
for (int i = 1; i <= 3; i++)
for (int j = 1; j <= 3; j++) a[i][j] = 0;
}
Matrix operator *(const Matrix &b) const
{
Matrix tmp;
tmp.clear();
for (int i = 1; i <= 3; i++)
for (int j = 1; j <= 3; j++)
for (int k = 1; k <= 3; k++)
tmp.a[i][j] = (tmp.a[i][j] + (a[i][k] * b.a[k][j] % mod)) % mod;
return tmp;
}
};
Matrix fast_pow(Matrix tmp, ll n)
{
Matrix ans;
ans.a[1][1] = 1; ans.a[1][2] = 0; ans.a[1][3] = 0;
ans.a[2][1] = 0; ans.a[2][2] = 1; ans.a[2][3] = 0;
ans.a[3][1] = 0; ans.a[3][2] = 0; ans.a[3][3] = 1;
while (n)
{
if (n & 1)
ans = ans * tmp;
n >>= 1;
tmp = tmp * tmp;
}
return ans;
}
int main()
{
int T;
scanf("%d", &T);
while (T--)
{
Matrix tmp;
tmp.a[1][1] = 1; tmp.a[1][2] = 0; tmp.a[1][3] = 1;
tmp.a[2][1] = 1; tmp.a[2][2] = 0; tmp.a[2][3] = 0;
tmp.a[3][1] = 0; tmp.a[3][2] = 1; tmp.a[3][3] = 0;
ll n;
scanf("%lld", &n);
if (n == 2)
{
printf("3\n");
continue;
}
Matrix tt = fast_pow(tmp, n - 2);
ll ans = 0;
ll x = (tt.a[1][1] + tt.a[1][2] + tt.a[1][3]) % mod;
ll y = (tt.a[2][1] + tt.a[2][2] + tt.a[2][3]) % mod;
ll z = (tt.a[3][1] + tt.a[3][2] + tt.a[3][3]) % mod;
printf("%lld\n", (x + y + z) % mod);
}
return 0;
}