深度学习
IT界的小小小学生
写文章的目标不仅是解决问题,更是帮助阅读的人或企业实现商业价值。秉持 “从解决问题出发、在实践中学习,最终创造价值”的信念,予人玫瑰手留余香!
展开
-
深度学习入门(一),从Keras开始
深度学习:Keras入门(一)之基础篇安装keras1.关于Keras2.Keras的模块结构3.使用Keras搭建一个神经网络4.基本概念5.第一个示例安装keras安装环境:Anaconda(python3.6) 首先安装:tensorflow.(通过navigator,可参见直通车) 检验:import tensorflow as t...原创 2018-05-22 11:18:06 · 5645 阅读 · 1 评论 -
TensorFlow2.0 问世,Pytorch还能否撼动老大哥地位?
文章目录TensorFlow 2.0 previewTensorFlow 2.0 上线市场占有率全球情况中国概览TensorFlow与PyTorch区别TensorFlow2.0新特性主要变化简要总结1.0到2.0过渡自动过渡兼容方面小结参考文献TensorFlow 2.0 preview关于TensorFlow 2.0 preview,在谷歌开源战略师 Edd Wilder-James 曾将...原创 2019-03-19 15:47:00 · 5945 阅读 · 0 评论 -
GBDT与xgb区别,以及梯度下降法和牛顿法的数学推导
为什么要介绍梯度下降法和牛顿法那?这里提及两个算法模型GBDT和XGBoost,两个都是boosting模型。GBDT和xgb的目标函数是不同的,同时针对其目标函数中的误差函数 L(θ) 的拟合方式也有差异:GBDT利用一阶泰勒展开两项,做一个近似xgboost利用二阶泰勒展开三项,做一个近似言为之意,GBDT在函数空间中利用梯度下降法进行优化XGBoost在函数空间中用牛顿法进行...原创 2019-01-05 15:48:32 · 2503 阅读 · 0 评论 -
windows下pytorch安装过程(显卡与系统)
pytorch简介2017年1月18日,facebook下的torch7团队宣布Pytorch开源,官网地址:pytorch。2018.4月 ,PyTorch0.4.0已经有官方的Windows支持,安装ANACONDA参考博客:直通车看看自己适合安装个啥2018年4月25日,PyTorch 官方发布 0.4.0 版本,该版本的PyTorch 有多项重大更新,其中最重要的改进是支持 Wi...原创 2018-11-13 12:59:20 · 5037 阅读 · 0 评论 -
多维度预测,基于keras预测房价操作
数据来源kaggle,官网都有介绍。https://www.kaggle.com/c/boston-housingfrom keras.datasets import boston_housing(train_data,train_targets),(test_data,test_targets) = boston_housing.load_data()#训练集形状:print(trai...原创 2018-10-13 17:56:18 · 1244 阅读 · 0 评论 -
基于keras的波士顿房价预测
数据来源kaggle,官网都有介绍。https://www.kaggle.com/c/boston-housingfrom keras.datasets import boston_housing(train_data,train_targets),(test_data,test_targets) = boston_housing.load_data()#训练集形状:print(tra...原创 2018-10-13 17:54:05 · 4214 阅读 · 2 评论 -
keras 整理之 Layers
» 嵌入层 EmbeddingEmbeddingkeras.layers.Embedding(input_dim, output_dim, embeddings_initializer='uniform', embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_z...原创 2018-09-07 11:28:06 · 2264 阅读 · 0 评论 -
keras 基础入门整理
第一部分 文本与序列处理1.简介2 text模块提供的方法3 text.Tokenizer类3.1 成员函数3.2 成员变量4.示例第二部分 Keras中的神经网络层组件简介神经网络的使用简介序列模型Sequential类示例:mnist数据集训练函数模型第四部分1 Callbacks2 Application3 模型可视化第五部分 cnn实...原创 2018-09-10 13:28:14 · 2096 阅读 · 0 评论 -
keras之数据预处理
数据填充pad_sequencesfrom keras.preprocessing.sequence import pad_sequenceskeras.preprocessing.sequence.pad_sequences(sequences, maxlen=None,dtype='int32',padding='pre',truncating='pre', value=0.) ...原创 2018-09-10 10:12:52 · 3376 阅读 · 0 评论 -
使用Keras进行时间序列预测回归问题的LSTM实现
基本简介模型构建与编译区别 cell state 和 hidden statekeras 中设置两种参数的讨论完整代码:基本简介LSTM_learn 使用Keras进行时间序列预测回归问题的LSTM实现数据 数据来自互联网,这些数据用于预测航空公司的人数,我们使用LSTM网络来解决这个问题 关于此处模型构建,只对keras部分代码做重点的介绍...原创 2018-09-06 16:04:57 · 15734 阅读 · 5 评论 -
keras model.compile损失函数与优化器
概述损失函数是模型优化的目标,所以又叫目标函数、优化评分函数,在keras中,模型编译的参数loss指定了损失函数的类别,有两种指定方法:model.compile(loss='mean_squared_error', optimizer='sgd')或者from keras import lossesmodel.compile(loss=losses.mean_squared_err...原创 2019-07-12 10:47:31 · 5991 阅读 · 0 评论