分类算法专栏
整理相关分类算法,归类于此,共同成长!
IT界的小小小学生
写文章的目标不仅是解决问题,更是帮助阅读的人或企业实现商业价值。秉持 “从解决问题出发、在实践中学习,最终创造价值”的信念,予人玫瑰手留余香!
展开
-
GBDT分解形式理解,整理中2018-5-10
GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起被认为是泛化能力(generalization)较强的算法。近些年更因为被用于搜索排序的机器学习模型而引起大家关注。GBDT主...原创 2018-05-10 13:10:13 · 606 阅读 · 0 评论 -
推荐算法图推荐-基于随机游走的personalrank算法实现
推荐算法图推荐基于图的模型(graph-based model)是推荐系统中的重要内容。其实,很多研究人员把基于邻域的模型也称为基于图的模型,因为可以把基于邻域的模型看做基于图的模型的简单形式在研究基于图的模型之前,首先需要将用户的行为数据,表示成图的形式,下面我们讨论的用户行为数据是用二元数组组成的,其中每个二元组(u,i)表示用户u对物品i的产生过行为,这种数据很容易用一个二分图表示...转载 2018-04-11 16:41:14 · 3859 阅读 · 0 评论 -
协同过滤算法概述与python 实现协同过滤算法基于内容(usr-item,item-item)
协调过滤推荐概述 协同过滤(Collaborative Filtering)作为推荐算法中最经典的类型,包括在线的协同和离线的过滤两部分。所谓在线协同,就是通过在线数据找到用户可能喜欢的物品,而离线过滤,则是过滤掉一些不值得推荐的数据,比比如推荐值评分低的数据,或者虽然推荐值高但是用户已经购买的数据。 协同过滤的模型一般为m个物品,m个用户的数据,只有部分用户和部分数据之间是...原创 2018-04-08 17:00:30 · 13465 阅读 · 6 评论 -
python SVM 案例,sklearn.svm.SVC 参数说明
sklearn.svm.SVC 参数说明经常用到sklearn中的SVC函数,这里把文档中的参数翻译了一些,以备不时之需。本身这个函数也是基于libsvm实现的,所以在参数设置上有很多相似的地方。(PS: libsvm中的二次规划问题的解决算法是SMO)。sklearn.svm.SVC(C=1.0,kernel='rbf', degree=3, gamma='auto',coef0...原创 2018-03-09 17:02:59 · 27401 阅读 · 3 评论 -
在统计学中概率分布中的概率密度函数PDF,概率质量PMF,累积分布CDF
一. 概念解释PDF:概率密度函数(probability density function), 在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。PMF : 概率质量函数(probability mass function), 在概率论中,概率质量函数是离散随机变量在各特定取值上的概率。CD...原创 2018-03-16 12:03:47 · 7660 阅读 · 0 评论