LuoguP1890 gcd区间

3 篇文章 0 订阅
2 篇文章 0 订阅

这道题,只要会gcd,都可以过啊。
(a,b)=(b,a mod b)

int gcd(int a,int b)
{
    return b?gcd(b,a%b):a;
}

然后,RMQ比暴力还慢。。。。。。。。。。。(此处省略 tanπ2rad()

int gcd(int x,int y)
{
    return y?gcd(y,x%y):x;
}
int log2(int x)
{
    return (int)(log10(x)/log10(2));
}
int n,t,f[1010][20];
int main()
{
    n=read();
    t=read();
    fr(i,1,n)
        f[i][0]=read();
    fr(j,1,log2(n))
        fr(i,1,n-(1<<j)+1)
            f[i][j]=gcd(f[i][j-1],f[i+(1<<(j-1))][j-1]);
    while(t--)
    {
        int l=read(),r=read(),o;
        o=log2(r-l+1);
        printf("%d\n",gcd(f[l][o],f[r-(1<<o)+1][o]));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值