这道题,只要会gcd,都可以过啊。
(a,b)=(b,a mod b)
int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}
然后,RMQ比暴力还慢。。。。。。。。。。。(此处省略 tanπ2rad个。(众:那不是不存在的吗) )
int gcd(int x,int y)
{
return y?gcd(y,x%y):x;
}
int log2(int x)
{
return (int)(log10(x)/log10(2));
}
int n,t,f[1010][20];
int main()
{
n=read();
t=read();
fr(i,1,n)
f[i][0]=read();
fr(j,1,log2(n))
fr(i,1,n-(1<<j)+1)
f[i][j]=gcd(f[i][j-1],f[i+(1<<(j-1))][j-1]);
while(t--)
{
int l=read(),r=read(),o;
o=log2(r-l+1);
printf("%d\n",gcd(f[l][o],f[r-(1<<o)+1][o]));
}
return 0;
}