leetcode -- 63. Minimum Path Sum

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example:

Input:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-path-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

 

思路:

1. 思路和前面62. 63差不多

2. dp[i][j]表示在位置 i , j 处的最小和

位于起点即 i == 0 && j == 0 时,dp[i][j]等于起点处的值

当位于第一排时,只能由其左边的值决定,位于第一列时,由其上面的值决定

其他位置处 dp[i][j] = min(左边dp+此处的值,上面dp+此处的值)

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        int m = grid.size();
        int n = grid[0].size();
        if(m == 0 || n == 0)
            return 0;
        int dp[m][n] = {0};
        for(int i = 0; i < m; i++){
            for(int j = 0; j < n; j++){
                if(i == 0 && j == 0) dp[i][j] = grid[i][j];
                else if(i == 0) dp[i][j] = dp[i][j-1] + grid[i][j];
                else if(j == 0) dp[i][j] = dp[i-1][j] + grid[i][j];
                else{
                    dp[i][j] = min(dp[i-1][j]+grid[i][j], dp[i][j-1]+grid[i][j]);
                }
            }
        }
        return dp[m-1][n-1];
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值