A tree is a connected graph that doesn't contain any cycles.
The distance between two vertices of a tree is the length (in edges) of the shortest path between these vertices.
You are given a tree with n vertices and a positive number k. Find the number of distinct pairs of the vertices which have a distance of exactly k between them. Note that pairs (v, u) and (u, v) are considered to be the same pair.
Input
The first line contains two integers n and k (1 ≤ n ≤ 50000, 1 ≤ k ≤ 500) — the number of vertices and the required distance between the vertices.
Next n - 1 lines describe the edges as "ai bi" (without the quotes) (1 ≤ ai, bi ≤ n, ai ≠ bi), where ai and bi are the vertices connected by the i-th edge. All given edges are different.
OutputPrint a single integer — the number of distinct pairs of the tree's vertices which have a distance of exactly k between them.
Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
Examples5 2
1 2
2 3
3 4
2 5
4
5 3
1 2
2 3
3 4
4 5
2
题意:给你一颗树,求找出距离为k的点对数
第一题树形dp,看的有点头晕,好不容易才看懂了。
#include<bits/stdc++.h>
using namespace std;
const int maxn=50007;
vector<int >a[maxn];
typedef long long ll;
int n,k;
ll dp[maxn][507];///以某点为根结点距离为多少的个数
void dfs(int u,int fa)//预处理出以u为根结点的距离
{
dp[u][0]=1;
for(int i=0;i<a[u].size();i++)
{
int v=a[u][i];
if(v==fa) continue;
dfs(v,u);
for(int j=1;j<=k;j++)
{
dp[u][j]+=dp[v][j-1];//
}
}
}
void solve(int u,int fa)//处理出道u结点距离为多少的个数
{
for(int i=0;i<a[u].size();i++)
{
int v=a[u][i];
if(v==fa) continue;
for(int j=k;j>=1;j--)//需要逆过来,因为这里的
//dp[v][j]-=dp[v][j-2],右边应该是表示以v为根结点到v距离为j-2的个数
{ dp[v][j]+=dp[u][j-1]; if(j>1) dp[v][j]-=dp[v][j-2]; } solve(v,u); } } int main() { ios::sync_with_stdio(false); while(cin>>n>>k) { memset(dp,0,sizeof(dp)); ll ans=0; for(int i=0;i<maxn;i++) a[i].clear(); for(int i=1;i<n;i++) { int u,v; cin>>u>>v; a[u].push_back(v);///v的父亲为u a[v].push_back(u); } dfs(1,-1); solve(1,-1); for(int i=1;i<=n;i++) ans+=dp[i][k]; cout<<ans/2<<endl;//最后要除以2 } return 0; }
这个东西可能有点难度,静下心来好好的搞。加油!