牛顿迭代法求方程的根

已知曲线1对应的函数为1/π(1+x^2),曲线2对用的函数为1​(1+cos(x))/2π。请用牛顿迭代求近似根算法求出这两条曲线在区间[1.5,5]上的交点对应的x近似值(可能有多个交点),并输出这些交点处的x近似值,允许的误差和输出值保留小数位数从键盘录入。
提示:输出保留小数位数可用函数round实现。下面的输入输出样例仅做格式参考,不做真实值参考。
【输入样例】
1e-8, 3
【输出样例】
2.678
3.45

保留指定小数位:
m = round(x, 指定位数) 

 

最终代码:
err,save=eval(input())
import math
import numpy as np
def f(x):
    return 1/((1+x**2)*np.pi)-(1+np.cos(x))/(2*(np.pi))
def df(x):
    return -(2*x)/(((1+x**2)**2)*np.pi)+(np.sin(x))/(2*(np.pi))
x=1.6
while 1.6 <= x <= 4:
    x=x-f(x)/df(x)
    if abs(f(x))<err:
        m = round(x, save)
        print(m, sep="\n")
        break

但是此代码只能求出一个根,并不能把所有根全部求出

 正确的做法:

(将while循环修改为for循环即可)

err,save=eval(input())
import math
import numpy as np
def f(x):
    return 1/((1+x**2)*np.pi)-(1+np.cos(x))/(2*(np.pi))
def df(x):
    return -(2*x)/(((1+x**2)**2)*np.pi)+(np.sin(x))/(2*(np.pi))
t=[1.6,4]
for x in t:
  while True:
    if abs(f(x))<err:
        m=round(x,save)
        print(m,sep="\n")
        break
    x=x-f(x)/df(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值