已知曲线1对应的函数为1/
π(1+x^2)
,曲线2对用的函数为1(1+cos(x))/2π
。请用牛顿迭代求近似根算法求出这两条曲线在区间[1.5,5]上的交点对应的x近似值(可能有多个交点),并输出这些交点处的x近似值,允许的误差和输出值保留小数位数从键盘录入。
提示:输出保留小数位数可用函数round实现。下面的输入输出样例仅做格式参考,不做真实值参考。
【输入样例】
1e-8, 3
【输出样例】
2.678
3.45
保留指定小数位:
m = round(x, 指定位数)
最终代码: err,save=eval(input()) import math import numpy as np def f(x): return 1/((1+x**2)*np.pi)-(1+np.cos(x))/(2*(np.pi)) def df(x): return -(2*x)/(((1+x**2)**2)*np.pi)+(np.sin(x))/(2*(np.pi)) x=1.6 while 1.6 <= x <= 4: x=x-f(x)/df(x) if abs(f(x))<err: m = round(x, save) print(m, sep="\n") break但是此代码只能求出一个根,并不能把所有根全部求出
正确的做法:
(将while循环修改为for循环即可)
err,save=eval(input()) import math import numpy as np def f(x): return 1/((1+x**2)*np.pi)-(1+np.cos(x))/(2*(np.pi)) def df(x): return -(2*x)/(((1+x**2)**2)*np.pi)+(np.sin(x))/(2*(np.pi)) t=[1.6,4] for x in t: while True: if abs(f(x))<err: m=round(x,save) print(m,sep="\n") break x=x-f(x)/df(x)