基于深度学习的实例分割
论文研究到环境搭建,最后程序运行
Graciela?
这个作者很懒,什么都没留下…
展开
-
基于深度学习的实例分割相关论文读后总结(重新整改后)
一、过去几年中:1.1 深度卷积网络(CNN)(图像分类):最初被设计用于解决图像级分类问题,此类算法的任务是输出给定图片的类别。现如今,计算机视觉领域中,输出结果还包括位置和形状,即需要对图像进行像素级的分类处理,输出目标的形状和位置。规模较大的卷积神经网络需要图片样本数量庞大(10万以上)。二、现如今:2.1 目标检测技术(目标位置):检测出图片中目标的位置,并且确定其类别。(实力分割的基础性的算法)(基于深度学习技术)(1)单阶段目标检测算法(2)两阶段目标检测算法深度学习技术三、分原创 2020-06-21 20:54:06 · 490 阅读 · 0 评论 -
创建win10虚拟机,启动后进入boot manager界面
(1)用镜像文件安装系统时出现boot manager界面(2)将虚拟机关机,编辑虚拟机,选项——>高级——>BIOS,点击保存。重新启动就可以进入安装界面了。原创 2020-07-04 11:58:33 · 5443 阅读 · 0 评论 -
环境配置(1)——python、CUDA、cudnn库
python(1)在官网上下载安装Python3.6.8CUDA(1)下载CUDA Toolkit 10.0(tensorflow1.15.0基于cuda10.0编译,10.1不兼容)https://developer.nvidia.com/cuda-10.0-download-archive?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal(2)安装CUDA根据指原创 2020-07-06 17:39:44 · 644 阅读 · 0 评论 -
环境配置(2)——更换清华源、Tensorflow、Keras
安装Tensorflow、Keras框架更换清华源cmd或powerShell输入:pip install pip -Upip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple安装tensorflowpip install tensorflow-gpu==1.15.0安装Keraspip install keras==2.2.5安装其他库:pip install numpy scipy pi原创 2020-07-08 14:35:12 · 856 阅读 · 0 评论 -
环境配置时遇到的问题(TensorFlow、更换清华源)
更换清华源(1)报错:报错的指令显示pip的版本过低,给pip升级就可以了。(2)先查看pip版本:pip --version确定是版本低便升级pip安装Tensorflow(1)报错:指令显示setuptools的版本低(2)升级setuptools其他(1)报错:(2)第一种情况:网络慢,换个网络连接下载(我是这种情况)第二种情况:使用命令pip --default-timeout=1000 install -U 模块名例如:pip --default-timeo原创 2020-07-08 14:46:12 · 605 阅读 · 0 评论 -
报错:pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host=‘f 的解决办法
(1)网络问题(换个网络连接)(2)使用命令:pip --default-timeout=1000 install -U 模块名原创 2020-07-08 14:55:19 · 1349 阅读 · 0 评论 -
程序运行——识别
打开powershell输入jupyter-lab在弹出的页面中依次运行cell即可显示步骤分析结果,初次加载tensorflow时间较长原创 2020-07-08 14:59:39 · 168 阅读 · 0 评论 -
ISIC数据集下载(问题解决)
(1)报错无法打开文件(2)进入该文件的上级目录尝试(3)报错没有tqdm(4)输入pip install tqdm,安装tqdm(5)下载数据集(6)成功原创 2020-07-09 11:10:34 · 3177 阅读 · 13 评论