- 博客(71)
- 收藏
- 关注
原创 Vision Transformer
ViT是一种新型的深度学习模型,它使用transformer架构来对图像进行处理,与传统的卷积神经网络不同。 在ViT中,图像被划分为一个个固定大小的图块,并通过transformer进行处理,使得ViT可以适用于不同大小的图像。
2023-06-23 19:41:32 641
原创 生成对抗网络pix2pixGAN
pix2pixGAN主要用于图像之间的转换,生成器的输入为图像,输出是生成的图像G(x)!判别器需要分辨出{x,G(x)}和{x, y}!
2023-04-25 19:37:14 1103 1
原创 生成对抗网络cGAN(条件GAN)
条件GAN,其核心在于将属性信息融入生成器和判别器中,属性可以是任何标签信息,例如图像的类别、人脸图像的面部表情等!
2023-04-20 21:27:07 1885
原创 生成对抗网络DCGAN
DCGAN将CNN和原始的GAN结合到一起,生成模型和判别模型都运用了深度卷积神经网络的生成对抗网络,奠定之后几乎所有GAN的基本网络架构,极大地提升了原始GAN训练的稳定性以及生成结果质量。
2023-04-20 17:11:37 506
原创 WSI图像分割
(Whole Slide Image, WSI)图像非常的大,处理起来比较麻烦,在深度学习中的病理切片图像大多数在 10万x10万分辨率,用平常的图像处理库没有办法读取,openslide 提供了一个很好的接口,这里介绍一个可用于处理大型病理切片图像的 python 库 (OpenSlide)。
2023-04-15 09:38:42 2010
原创 混合池化模块--MPM(Mixed Pooling Module)
输入一个特征图,C×H×W,经过水平和竖直条纹池化后变为H×1和1×W,使用求平均的方法,对池化核内的元素值求平均,并以该值作为池化输出值;随后经过卷积对两个输出feature map分别沿着左右和上下进行扩充,扩充后两个特征图尺寸相同,对扩充后的特征图对应相同位置进行逐像素求和得到H×W的特征图;因此,将strip pooling和pyramid pooling结合起来,构造mixed pooling module模块,兼顾长条形和非长条形物体的效果,同时捕获不同位置之间的短距离和长距离依赖关系。
2022-10-03 22:26:33 3513 10
原创 YOLOv5结合GradCAM热力图可视化
三、在文件夹中,添加gradcam.py文件:四、在根目录下新建文件 :五、使用介绍1、更改文件中的类别2、更改model-path和img-path路径3、运行文件,结果如下 如果以上报错,即为torch版本不对,升级为1.8.0以上就可也可以将gradcam.py文件中的register_full_backward_hook换成register_backward_hook【YOLOv5】结合GradCAM热力图可视化_嗜睡的篠龙的博客-CSDN博客_yolov5 热
2022-09-03 18:05:38 6144 55
原创 YOLOV5的FPS计算问题
pre-process:图像预处理时间,包括图像保持长宽比缩放和padding填充,通道变换(HWC->CHW)和升维处理等;inference:推理速度,指预处理之后的图像输入模型到模型输出结果的时间;NMS :你可以理解为后处理时间,对模型输出结果经行转换等;data换为自己的数据集对应的yaml文件。weights换为训练自己数据集得到的权重。FPS=1000ms除以这三个时间之和。batchsize这里要设置为1。
2022-09-03 13:49:34 23244 48
原创 YOLOV7训练自己的数据集(只需四步快速上手)
在yolov7/data文件夹下新建VOC.yaml文件(直接复制COCO.yaml)对应的模型下载对应的预训练权重,并放置根目录下,本文用的是yolov7.pt。batch_size:YOLOV7占用显存较大,建议设置为2或4。Images文件夹中是图片,Labels文件夹中是对应的标签。直接把YOLOV5的数据集复制到根目录下。2、更改数据集类别数和类别名称。1、数据集地址改为对应的地址。epochs:训练的轮数。...
2022-08-27 22:20:00 2103
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人