算法设计之回溯法

算法设计之回溯法

a.子集和问题

public class SubSum1 {
	// 解向量
	static boolean x[] = new boolean[100];
	static int m = 8;
	
	static int count = 0;
	
	public static void main(String[] args) {
		
		int arr[] = {1,2,3,4,5,6};
		
		fun(arr,0,0);
		
		System.out.println(count);  	// 	110
		
	}
	
	public static void printOneSolution(int []arr) {
		
		for(int j=0; j<arr.length; j++) {
			if(x[j]) {
				System.out.print(arr[j]+" ");
			}
		}
		System.out.println();
	}
	
	public static void fun(int []arr,int step,int sum) {
		
		count++;
		
		// 剪枝 
		if(step>=arr.length || sum>m) {
			return;
		}
		
		if(sum==m) {
			printOneSolution(arr);
		}
		
		if(sum<=m) {
			x[step] = true;
			fun(arr,step+1,sum+arr[step]);
		}
		
		x[step] = false;
		fun(arr,step+1,sum);
		
	}
	
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值