自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 AlexNet

神经网络中的卷积层和全连接层执行的都是线性变换,如果没有激活函数,只是将这些线性层堆叠起来,其数学效果会“坍缩”,最终的数学效果都等价于一个单独的线性层。要求对卷积神经网络的基本概念和原理,了解深度卷积神经网络AlexNet的架构以 及各个组件的实现,并使用PyTorch框架搭建AlexNet及相应的训练与预测脚本,从而掌握 深度卷积神经网络的搭建、训练、测试过程以及相应的代码结构。它通过可学习的“滤波器”(权重w)在图像上滑动,以检测特定的视觉模式(如边缘、纹S理、颜色或更复杂的形状)。

2026-01-01 20:15:25 719

原创 三维视觉基础2

项目以“运动恢复结构”(Structure from Motion, SfM)与“多视图立体匹配”(Multi-View Stereo, MVS)为底层技术框架,通过程序化的特征提取、匹配、与几何解算,精确地恢复相机运动参数与场景的稀疏结构,并在此基础上生成具有真实纹理的稠密几何模型。当面对纹理稀疏(如白墙)、重复纹理(如砖墙)或视角变化巨大的场景时,传统算法(如SIFT)很难找到足够多且准确的对应点,这就好比盖房子没有找到足够牢固的承重点,后续的几何计算自然会产生巨大误差,导致模型有空洞、噪声大。

2026-01-01 19:56:32 778

原创 三维视觉基础1

calc_prism_star_geom(outer_R: float, inner_R: float, num_points: int, height: float): 接收星形外顶点半径 outer_R、内顶点半径 inner_R、角的数量 num_points 和高 height,返回星形棱柱的几何数据。calc_prism_geom(ne: int, r: float, h: float): 接收底面边数ne、外接圆半径r和高h,返回一个棱柱的几何数据。

2026-01-01 19:30:44 800

【计算机视觉】基于AlexNet深度卷积神经网络的花卉图像分类系统实现:模型训练与多类别识别性能分析

内容概要:本文档记录了学生高品在深度卷积神经网络应用方面的实验成果,重点围绕使用AlexNet模型实现花卉图像分类任务。文中详细展示了模型构建(model.py)、训练(train.py)和预测(predict.py)三个核心模块的关键代码实现,并对实验结果进行了分析。AlexNet模型通过卷积层提取图像特征,经全连接层完成五类花卉分类任务,训练过程中采用CrossEntropyLoss损失函数与AdamW优化器。实验结果显示,在5类花分类任务中,10轮训练后损失降至0.86;当减少至4类花且每类仅40个样本时,8轮内损失即低于0.8,表明类别数和样本量对模型收敛速度有显著影响。此外,还提供了模型预测可视化结果与不同训练设置下的性能对比。; 适合人群:具备深度学习基础知识、熟悉PyTorch框架的高校学生或初级算法工程师,尤其适合从事计算机视觉方向学习与研究的人员; 使用场景及目标:①掌握AlexNet网络结构的设计原理及其在图像分类中的实现方法;②理解模型训练流程中损失函数、优化器的选择与代码实现;③通过调整数据集规模与类别数量分析其对模型性能的影响; 阅读建议:建议结合代码与实验结果进行对照学习,动手复现实验过程,尝试调整网络结构或超参数以深入理解CNN的工作机制与泛化能力。

2026-01-08

aaaaaaaaaa优化算法sgd

aaaaaaaaaa优化算法sgd

2026-01-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除