有限域的矩阵表示
原文:Matrix Representation of Finite Fields
作者:W.P. Wardlaw
时间:1992.3.12
译者:宋海龙
摘要
自从伽罗华在1832年发明了有限域并在1846年发表了他的研究工作以来,有限域(也被称为伽罗华域)被广泛研究。在最近几十年,有限域已经在信息论、编码理论及密码学中变得非常重要。
这篇报告利用矩阵的幂(整数模有限域的特征)的形式给出了一种表示有限域的简洁方法。有限域上的加法和乘法就是普通的矩阵加法和乘法。这种表示法可以称为规范循环表示——这使得理解域的结构和执行域上的计算变得容易。
内容目录
介绍
有限域的表示
矩阵表示
规范循环表示
一般情况
割圆多项式
改进的例子
推论
参考文献
有限域的矩阵表示
介绍
有限域在编码理论、信息论和密码学中都有很多应用。因此,怎样用易理解和有效的方法来表示有限域就变得非常重要。
许多大学的抽象代数教科书中给出的是怎样来表示素域 F p F_p Fp上的有限域 F q F_q Fq——通过明确指定它作为向量空间或 F p F_p Fp上的多项式商环的加法结构,然而使得乘法结构难以确定。或者,他们明确说明了乘法群的循环结构却没有清晰地跟加法结构联接起来。在本文中,我们提出了一种矩阵表示法,它可以很自然很简洁地显示域 F q F_q Fq(其中 q = p d q=p^d q=pd)在其素域 F p F_p Fp上的乘法和加法结构。尽管这种表示法曾经有人提出过(见[3, p. 65],例子),但它还没有在抽象代数的教科书中被广泛应用。
有限域的表示
为说明这些想法,让我们先考虑素域 F 2 F_2 F2上的8个元素的域 F 8 F_8 F8。 F 8 F_8 F8的加法结构是 F 2 F_2 F2上的三维向量空间 V = { ( 0 0 0 ) , ( 1 0 0 ) , ( 0 1 0 ) , ( 0 0 1 ) , ( 1 1 0 ) , ( 1 0 1 ) , ( 0 1 1 ) , ( 1 1 1 ) } V=\{(0\ 0\ 0),(1\ 0\ 0),(0\ 1\ 0),(0\ 0\ 1),(1\ 1\ 0),(1\ 0\ 1),(0\ 1\ 1),(1\ 1\ 1)\} V={(0 0 0),(1 0 0),(0 1 0),(0 0 1),(1 1 0),(1 0 1),(0 1 1),(1 1 1)}。然而,还不清楚的是,怎样定义这些向量的乘积来获得 F 8 F_8 F8的乘法结构!这可以通过扩展乘法表来给出,见表(1)。
(1)
. | (1 0 0) | (0 1 0) | (0 0 1) |
---|---|---|---|
(1 0 0) | (1 0 0) | (0 1 0) | (0 0 1) |
(0 1 0) | (0 1 0) | (0 0 1) | (1 1 0) |
(0 0 1) | (0 0 1) | (1 1 0) | (0 1 1) |
其中基是: B = { ( 1 0 0 ) , ( 0 1 0 ) , ( 0 0 1 ) } B=\{(1\ 0\ 0),(0\ 1\ 0),(0\ 0\ 1)\} B={(1 0 0),(0 1 0),(0 0 1)},通过双线性映射给出了 F 8 F_8 F8的乘法结构,尽管直接的证明将是冗长枯燥的。
一种更常见的,也是更有用的处理方法(见[1, p. 171]或[3, p. 25, Thm. 1.6.1)是
F
2
F_2
F2上的所有多项式模三次不可约多项式
x
3
+
x
+
1
x^3+x+1
x3+x+1所构成的商环表示法。
(2)
F
8
≅
F
2
[
x
]
/
(
x
3
+
x
+
1
)
F_8 \cong F_2[x]/(x^3+x+1)
F8≅F2[x]/(x3+x+1)
如果我们令
a
∈
F
8
a\in F_8
a∈F8表示
x
x
x模
x
3
+
x
+
1
x^3+x+1
x3+x+1的剩余类,从而易知
a
3
+
a
+
1
=
0
a^3+a+1=0
a3+a+1=0。因此,易知(记得域的特征是2!)
a
3
=
a
+
1
a^3=a+1
a3=a+1,
a
4
=
a
2
+
a
a^4=a^2+a
a4=a2+a,
a
5
=
a
2
+
a
+
1
a^5=a^2+a+1
a5=a2+a+1,
a
6
=
a
2
+
1
a^6=a^2+1
a6=a2+1以及
a
7
=
1
a^7=1
a7=1,所以
(3)
F
8
=
{
0
,
1
,
a
,
a
2
,
a
3
,
a
4
,
a
5
,
a
6
}
=
{
0
,
1
,
a
,
a
2
,
a
+
1
,
a
2
+
a
,
a
2
+
a
+
1
,
a
2
+
1
}
F_8=\{0, 1, a, a^2, a^3, a^4, a^5, a^6\}=\{0, 1, a, a^2, a+1, a^2+a, a^2+a+1, a^2+1\}
F8={0,1,a,a2,a3,a4,a5,a6}={0,1,a,a2,a+1,a2+a,a2+a+1,a2+1}
这样, F 8 F_8 F8的乘法群 F 8 ∗ = ⟨ a ⟩ F_8^*=\langle a \rangle F8∗=⟨a⟩是由 a a a生成的简单的7阶循环群。(3)中的第二个公式使得加法结构容易看出来,尽管它使得乘法结构有点模糊。可以通过下面简化了的乘法表并结合 F 8 F_8 F8中元素的乘法分配律来给出。
(4)
. | 1 1 1 | a a a | a 2 a^2 a2 |
---|---|---|---|
1 1 1 | 1 1 1 | a a a | a 2 a^2 a2 |
a a a | a a a | a 2 a^2 a2 | a + 1 a+1 a+1 |
a 2 a^2 a2 | a 2 a^2 a2 | a + 1 a+1 a+1 | a 2 + a a^2+a a2+a |
(对比表(1)表(4)可以相当容易地证明表(1)给出的乘法满足域公理。)此外,我们可以利用关系 a 3 + a + 1 = 0 a^3+a+1=0 a3+a+1=0去乘以(3)中第二个公式中所给出的元素。这是一个有限域标准的表示法,而且看上去很合理很令人满意。然而,从加法到乘法的变换仍然有一些事情值得期待。
矩阵表示
如果我们选取域 F 8 F_8 F8中的任意一个元素 b b b, L b L_b Lb是一个 F 2 F_2 F2上的向量空间 V = F 8 V=F_8 V=F8中的线性变换,它表示左乘 b b b。如果我们选取 F 2 F_2 F2上的向量空间 V = F 8 V=F_8 V=F8的任意一组基 B ′ B' B′,我们可以找到 L b L_b Lb在这组基上的矩阵 [ L b ] = [ L b ] B ′ [L_b]=[L_b]_{B'} [Lb]=[Lb]B′。如果我们固定了基 B ′ B' B′并且通过这种方法找出 F 8 F_8 F8中每个元素的矩阵,那么很显然这些矩阵的结果组成的集合同构于 F 8 F_8 F8。这样,每次基的选取就可以给出 F 8 F_8 F8的一种矩阵表示。
乍看上去,似乎在我们获得矩阵表示之前,我们必须有一个域的乘法表。但是有一种方法可以规避这个困难。
令
A
=
[
0
0
1
1
0
1
0
1
0
]
A=\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
A=⎣⎡010001110⎦⎤
是
F
2
F_2
F2上三次不可约多项式
f
(
x
)
=
x
3
+
x
+
1
f(x)=x^3+x+1
f(x)=x3+x+1的伴随矩阵(见[1, p. 264], [2, pp. 229-230], 或[5, p. 201, 定义5.2.16),那么
f
(
A
)
=
0
f(A)=0
f(A)=0,所以
A
A
A的幂满足上面的关系式;特别地,矩阵
A
A
A生成的7阶循环群
⟨
A
⟩
\langle A \rangle
⟨A⟩同构于
F
8
∗
F_8^*
F8∗,而且矩阵环
F
2
[
A
]
=
{
0
,
I
,
A
,
A
2
,
A
3
,
A
4
,
A
5
,
A
6
}
F_2[A]=\{0, I, A, A^2, A^3, A^4, A^5, A^6\}
F2[A]={0,I,A,A2,A3,A4,A5,A6}
同构于域
F
8
F_8
F8。那很容易,不是吗?
的确,我们会看到,这有点太简单了。现在考虑三元域
F
3
F_3
F3上的不可约多项式
g
(
x
)
=
x
2
+
1
g(x)=x^2+1
g(x)=x2+1。我们看到它的伴随矩阵
B
B
B的乘法阶为4:
B
=
[
0
2
1
0
]
,
B
2
=
[
2
0
0
2
]
,
B
3
=
[
0
1
2
0
]
,
B
4
=
[
1
0
0
1
]
=
I
B=\begin{bmatrix} 0 & 2 \\ 1 & 0 \\ \end{bmatrix}, B^2=\begin{bmatrix} 2 & 0 \\ 0 & 2 \\ \end{bmatrix}, B^3=\begin{bmatrix} 0 & 1 \\ 2 & 0 \\ \end{bmatrix}, B^4=\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix}=I
B=[0120],B2=[2002],B3=[0210],B4=[1001]=I
对于
F
9
F_9
F9不够用!而且
B
B
B的幂在加法下不封闭。幸运的是,有一种相当简单的补救办法:将矩阵
0
0
0,
I
+
B
I+B
I+B,
I
+
B
3
I+B^3
I+B3,
B
+
B
2
B+B^2
B+B2以及
B
2
+
B
3
B^2+B^3
B2+B3连接到
B
B
B的幂集合中从而获得由
B
B
B生成的矩阵环
F
2
[
B
]
F_2[B]
F2[B]。由于
g
(
B
)
=
B
2
+
I
=
0
g(B)=B^2+I=0
g(B)=B2+I=0,显然环
F
2
[
B
]
F_2[B]
F2[B]同构于域
F
9
F_9
F9。这样,
B
B
B提供了九个元素域
F
2
[
B
]
F_2[B]
F2[B]的一种矩阵表示,而且我们说
B
B
B是域
F
9
F_9
F9的一个生成元。
规范循环表示
但是我们比较喜欢 F 9 F_9 F9的一种循环生成元;也就是说,有一个矩阵 M M M,使得 F 9 F_9 F9的乘法群 F 9 ∗ F_9^* F9∗同构于 M M M生成的循环群 ⟨ M ⟩ \langle M \rangle ⟨M⟩。这件事,同样也并不难。一个8元的循环群正好有 φ ( 8 ) = 4 \varphi(8)=4 φ(8)=4个生成元,它们都不是4阶元素的幂。这样,乘法群 F 3 [ B ] ≅ F 9 ∗ F_3[B]\cong F_9^* F3[B]≅F9∗就可以被 F 3 [ B ] F_3[B] F3[B]中这4个非零矩阵(它们不是 B B B的幂)中的任何一个循环地生成出来。读者可以很容易地验证矩阵 M = I + B = [ 1 2 1 1 ] M=I+B=\begin{bmatrix} 1 & 2 \\ 1 & 1 \\ \end{bmatrix} M=I+B=[1121]是 F 9 F_9 F9的一个循环生成元。
注意到集合
F
3
[
B
]
F_3[B]
F3[B]是由矩阵
I
I
I和
B
B
B张成的,而且也可以由
I
I
I和
M
M
M张成。也就是说,
F
3
[
B
]
=
L
(
I
,
B
)
=
L
(
I
,
M
)
F_3[B]=L(I,B)=L(I,M)
F3[B]=L(I,B)=L(I,M)。如果
B
B
B和
M
M
M是有序基
(
I
,
B
)
(I,B)
(I,B)和
(
I
,
M
)
(I,M)
(I,M),各自地,我们看到
L
B
:
I
↦
B
=
0
⋅
I
+
1
⋅
B
B
↦
B
2
=
2
⋅
I
+
0
⋅
B
所
以
,
[
L
B
]
B
=
[
0
2
1
0
]
=
B
,
L_B:\begin{matrix} I &\mapsto &B &= &0 \cdot I + 1 \cdot B \\ B &\mapsto &B^2 &= &2 \cdot I + 0 \cdot B \end{matrix}\ 所以, [L_B]_B=\begin{bmatrix} 0 & 2 \\ 1 & 0 \\ \end{bmatrix}=B,
LB:IB↦↦BB2==0⋅I+1⋅B2⋅I+0⋅B 所以,[LB]B=[0120]=B,
L
M
:
I
↦
M
=
1
⋅
I
+
1
⋅
B
B
↦
M
B
=
2
⋅
I
+
1
⋅
B
所
以
,
[
L
M
]
B
=
[
1
2
1
1
]
=
M
,
L_M:\begin{matrix} I &\mapsto &M &= &1 \cdot I + 1 \cdot B \\ B &\mapsto &MB &= &2 \cdot I + 1 \cdot B \end{matrix} \ 所以,[L_M]_B=\begin{bmatrix} 1 & 2 \\ 1 & 1 \\ \end{bmatrix}=M,
LM:IB↦↦MMB==1⋅I+1⋅B2⋅I+1⋅B 所以,[LM]B=[1121]=M,
而且,
L
M
:
I
↦
M
=
0
⋅
I
+
1
⋅
M
M
↦
M
2
=
1
⋅
I
+
2
⋅
M
所
以
,
[
L
M
]
M
=
[
0
1
1
2
]
=
A
.
L_M:\begin{matrix} I &\mapsto &M &= &0 \cdot I + 1 \cdot M \\ M &\mapsto &M^2 &= &1 \cdot I + 2 \cdot M \end{matrix}\ 所以,[L_M]_M=\begin{bmatrix} 0 & 1 \\ 1 & 2 \\ \end{bmatrix}=A.
LM:IM↦↦MM2==0⋅I+1⋅M1⋅I+2⋅M 所以,[LM]M=[0112]=A.
由于
A
A
A和
M
M
M相似,由此得知
A
A
A是
F
9
F_9
F9的另一个循环生成元。而且,
A
A
A是它的特征多项式
f
A
(
x
)
=
x
2
+
x
+
2
f_A(x)=x^2+x+2
fA(x)=x2+x+2的伴随矩阵。我们称
A
A
A为
F
9
F_9
F9的一个规范循环生成元,而称表示
F
3
[
A
]
=
{
0
,
I
,
A
,
A
2
,
A
3
,
A
4
,
A
5
,
A
6
,
A
7
}
F_3[A]=\{0, I, A, A^2, A^3, A^4, A^5, A^6, A^7\}
F3[A]={0,I,A,A2,A3,A4,A5,A6,A7}
是域
F
9
F_9
F9的一个规范循环表示。
一般情况
当然,所有这些想法都可以一般化到任意有限域上。(确实,他们可以一般化到任意域的有限扩域,但是我们这里的处理是限制在域
F
p
F_p
Fp的扩域上,其中
p
p
p是素数。)令
p
p
p是一个素数,令
q
=
p
e
q=p^e
q=pe是
p
p
p的
e
e
e次幂。则
F
q
F_q
Fq是一个
q
q
q元域,它包含
F
p
=
Z
p
=
Z
/
(
p
)
F_p=Z_p=Z/(p)
Fp=Zp=Z/(p)(模
p
p
p的整数)作为它的素域。令
m
(
x
)
m(x)
m(x)是
F
p
F_p
Fp上的任意次数为
e
e
e的不可约多项式,而且令
B
B
B是
m
(
x
)
m(x)
m(x)的伴随矩阵。所有的
B
B
B的幂组成的环
F
p
[
B
]
F_p[B]
Fp[B]同构于域
F
q
F_q
Fq,而且这也就是
F
q
F_q
Fq的一个矩阵表示。找到一个
F
p
[
B
]
F_p[B]
Fp[B]中的矩阵
M
M
M,其周期(乘法阶)为
q
−
1
q-1
q−1,则
M
M
M必定是
F
q
F_q
Fq的一个循环生成元。最小多项式
m
M
(
x
)
=
m
A
(
x
)
m_M(x)=m_A(x)
mM(x)=mA(x)的伴随矩阵
A
A
A是以下域的一个规范循环生成元
F
p
[
A
]
=
{
0
,
I
,
A
,
A
2
,
⋯
 
,
A
q
−
2
}
≅
F
q
.
F_p[A]=\{0, I, A, A^2, \cdots, A^{q-2}\} \cong F_q.
Fp[A]={0,I,A,A2,⋯,Aq−2}≅Fq.
注意到如果 C C C是 F p F_p Fp上的任意 e × e e\times e e×e阶矩阵,那么由 C C C生成的环 F p [ C ] F_p[C] Fp[C]同构于 F q F_q Fq当且仅当由 C C C的幂组成的序列 C = ( I , C , C 2 , ⋯   , C e − 1 ) C=(I, C, C^2, \cdots, C^{e-1}) C=(I,C,C2,⋯,Ce−1)是独立的当且仅当 C C C的特征多项式 f C ( x ) f_C(x) fC(x)是不可约的。在这种情况下,如果基是 C C C,则左乘 C C C的矩阵 [ L C ] C [L_C]_C [LC]C,就是 f C ( x ) f_C(x) fC(x)的伴随矩阵。 C C C是 F q F_q Fq的一个循环生成元当且仅当 C C C是一个 F p [ C ] F_p[C] Fp[C]中的 q − 1 q-1 q−1次本原单位根。
分圆多项式
还有另一种可能更简单的方法,可以得到
F
q
F_q
Fq的规范循环生成元。记得
n
n
n次分圆多项式
c
n
(
x
)
c_n(x)
cn(x)的定义是所有
φ
(
n
)
\varphi (n)
φ(n)个本原
n
n
n次单位根
a
a
a的乘积。
(5)
c
n
(
x
)
=
∏
(
x
−
a
)
c_n(x)=\prod (x-a)
cn(x)=∏(x−a)
由于
x
n
−
1
=
0
x^n-1=0
xn−1=0的每一个根都是
n
n
n的一些因子
d
d
d的
d
d
d次本原单位根,所以从(5)式可以得到
(6)
x
n
−
1
=
∏
d
∣
n
c
d
(
x
)
.
x^n-1=\prod_{d|n} c_d(x).
xn−1=d∣n∏cd(x).
可以利用(6)获得递推公式
(7)
c
n
(
x
)
=
(
x
n
−
1
)
/
∏
d
∣
n
&
d
<
n
c
d
(
x
)
c_n(x)=(x^n-1)/\prod_{d|n \& d<n } c_d(x)
cn(x)=(xn−1)/d∣n&d<n∏cd(x)
接下来可以归纳地从(7)中得出
c
n
(
x
)
c_n(x)
cn(x)是一个首1多项式,它拥有整数系数,次数是
φ
(
n
)
\varphi (n)
φ(n)(从(5)中得知)。分圆多项式在实数域上都是不可约的(见[3, p. 61, Thm. 2.4.7], [4, p. 162], [5, p.289, Thm. 6.3.13],.),但是它们在有限域上通常都是可分解的。后面将非常有用的注意到如果
n
=
r
d
n=r^d
n=rd是素数
r
r
r的幂,那么可以递推地从(7)得到
(8)
c
n
(
x
)
=
(
x
n
−
1
)
/
(
x
n
/
r
−
1
)
,
(
n
=
r
d
,
r
是
素
数
)
c_n(x)=(x^n-1)/(x^{n/r}-1),(n=r^d,r是素数)
cn(x)=(xn−1)/(xn/r−1),(n=rd,r是素数)
F
q
F_q
Fq的每一个元素(
p
p
p是素数,
q
=
p
e
q=p^e
q=pe)是下面方程的一个根
(9)
x
q
−
x
=
x
(
x
q
−
1
−
1
)
=
0
,
x^q-x=x(x^{q-1}-1)=0,
xq−x=x(xq−1−1)=0,
这是由于
F
q
F_q
Fq是
x
q
−
x
x_q-x
xq−x的分裂域,而且每一个非零元是一个
q
−
1
q-1
q−1次单位根。如果
m
(
x
)
m(x)
m(x)是
c
q
−
1
(
x
)
c_{q-1}(x)
cq−1(x)的一个首1的不可约因式,而且
a
a
a是
m
(
x
)
m(x)
m(x)的一个根,那么
a
a
a是一个本原
q
−
1
q-1
q−1次单位根。(注意
m
(
x
)
m(x)
m(x)的次数必定是
e
e
e。)由此断定
A
A
A是
m
(
x
)
m(x)
m(x)的阶为
e
×
e
e \times e
e×e的伴随矩阵,那么
A
A
A是
F
q
F_q
Fq的一个规范循环生成元。
反之,如果 A A A是 F q F_q Fq在 F p F_p Fp上的一个规范循环生成元,那么它的最小多项式 m A ( x ) m_A(x) mA(x)是 c q − 1 ( x ) c_{q-1}(x) cq−1(x)在 F p [ x ] F_p[x] Fp[x]中的分圆多项式的一个不可约因式。这种观察可以导致一种分解分圆多项式的方法。这是一个相关的但不同的主题我们这里不做深究。
改进的例子
让我们对两个例子重新进行推导,这次利用的是分解分圆多项式的方法来获取 F 2 F_2 F2上的 F 8 F_8 F8以及 F 3 F_3 F3上的 F 9 F_9 F9的规范循环表示。(我们已经在上面很浅显地处理了这两个例子。)
对于
F
2
F_2
F2上的
F
8
F_8
F8,
e
=
[
F
8
:
F
2
]
=
3
e=[F_8:F_2]=3
e=[F8:F2]=3,所以
c
7
(
x
)
c_7(x)
c7(x)的因子是三次的。
c
7
(
x
)
=
(
x
7
−
1
)
/
(
x
−
1
)
=
x
6
+
x
5
+
x
4
+
x
3
+
x
2
+
x
+
1
=
(
x
3
+
x
+
1
)
(
x
3
+
x
2
+
1
)
c_7(x)=(x^7-1)/(x-1)=x^6+x^5+x^4+x^3+x^2+x+1=(x^3+x+1)(x^3+x^2+1)
c7(x)=(x7−1)/(x−1)=x6+x5+x4+x3+x2+x+1=(x3+x+1)(x3+x2+1)
(
c
7
(
x
)
c_7(x)
c7(x)的因子分解很容易,因为它的因子是
F
2
F_2
F2上的三次不可约多项式。)由于
x
3
+
x
+
1
x^3+x+1
x3+x+1和
x
3
+
x
2
+
1
x^3+x^2+1
x3+x2+1是
c
7
(
x
)
c_7(x)
c7(x)的不可约因子,由此断定它们的伴随矩阵
A
=
[
0
0
1
1
0
1
0
1
0
]
,
B
=
[
0
0
1
1
0
0
0
1
1
]
A=\begin{bmatrix} 0 & 0 & 1\\ 1 & 0 & 1\\ 0 & 1 & 0\\ \end{bmatrix}, B=\begin{bmatrix} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 1\\ \end{bmatrix}
A=⎣⎡010001110⎦⎤,B=⎣⎡010001101⎦⎤
是
F
2
F_2
F2上的
F
8
F_8
F8的规范循环生成元。
对于
F
3
F_3
F3上的
F
9
F_9
F9,我们想要分解
c
8
(
x
)
=
(
x
8
−
1
)
/
(
x
4
−
1
)
=
x
4
+
1.
c_8(x)=(x^8-1)/(x^4-1)=x^4+1.
c8(x)=(x8−1)/(x4−1)=x4+1.
由于
e
=
[
F
9
:
F
3
]
=
2
e=[F_9:F3]=2
e=[F9:F3]=2, 因子是二次的。不难看出
F
3
F_3
F3上的首1不可约多项式是
x
2
+
1
,
x
2
−
x
−
1
,
和
x
2
+
x
−
1
x^2+1,x^2-x-1,和x^2+x-1
x2+1,x2−x−1,和x2+x−1。期望的分解是
c
8
(
x
)
=
x
4
+
1
=
(
x
2
+
x
−
1
)
(
x
2
−
x
−
1
)
,
c_8(x)=x^4+1=(x^2+x-1)(x^2-x-1),
c8(x)=x4+1=(x2+x−1)(x2−x−1),
所以
F
3
F_3
F3上的
F
9
F_9
F9的规范循环生成元是相应的伴随矩阵
A
=
[
0
1
1
2
]
,
和
B
=
[
0
1
1
1
]
A=\begin{bmatrix} 0 & 1\\ 1 & 2\\ \end{bmatrix},和 B=\begin{bmatrix} 0 & 1\\ 1 & 1\\ \end{bmatrix}
A=[0112],和B=[0111]
推论
如同介绍中提到的,有限域在编码理论、信息论和密码学等领域有广泛应用。这篇报告中所描述的有限域的规范循环矩阵表示给出了一种很容易理解和方便计算的处理有限域的方法,它使得有限域在这些领域的应用变得简化了。
参考文献
- Herstein, I. N., Topics in Algebra, Blaisdell, Waltham, 1964.
- Hoffman, K. and Kunze, R., Linear Algebra, 2nd ed., Prentice Hall, Engelwood Cliffs, 1971.
- Lidl, R., and Niederreiter, H., Introduction to Finite Fields and their Applications, Cambridge University Press, New Yourk, 1986.
- van der Waerden, B. L., Modern Algebra, vol. 1, Ungar, New York, 1969.
- Walker, E. A., Introduction to Abstract Algebra, Random House, New York, 1987.