密码学基础——GF(2)有限域上的矩阵求逆

前言

上篇文章介绍了实数域上的线性代数求解可逆矩阵的方法,但有时候我们有更复杂的需求,如在有限域上求解可逆矩阵,有限域是一个很有意思的东西,它的知识可见这篇文章
今天我们简单描述如何在GF(2)有限域上求解4X4矩阵的可逆矩阵。请添加图片描述

数据结构

总所周知,GF(2)上的加法和乘法可以分别用异或(^)和逻辑与(&)来表示,因此,我们可以将矩阵中的每一行都可以被定义为一个数字,而不是一个二进制数组。这样做除了内存成本外,运行也会更高效。因为行上的操作比列上的操作更快,例如,两个8位向量之间的乘法(即,向量的内乘)需要GF(2)域上的8次乘法和7次加法。但是如果两个向量定义为单字节数字,则部分乘法的运算将减少为1个逻辑与。类似地,向量加法也可以减少为1个异或操作。
在C语言中我们使用结构体来定义4x4矩阵,我们将矩阵每一行看作一个数,那么实现代码如下:

typedef unsigned char   uint8_t;
typedef struct M4
{
    uint8_t M[4];
}M4;

随机生成GF(2)上4X4的矩阵

使用时间作种子 srand(time(NULL)) ,让rand() 产生的随机数。因为我们将4X4矩阵的每一行看作一个数,而一个数只有4个bit,所以将rand()%16,取值范围为0-15.

#include<stdlib.h>
#include<time.h>
void GetRandMatrix4(M4 *MT) {
	
	srand((unsigned int)time(NULL));
	for (int i = 0; i < 4; i++)
	{
		(*MT).M[i]=rand()%16;
	}

}

判断GF(2)上有限域矩阵是否可逆

上篇文章的求解思路是一样,只不过现在,4x4矩阵中所有元素为0和1,我们不需要考虑系数,并且我们把一行看成一个数,需要分别与0x08, 0x04, 0x02, 0x01进行逻辑与操作提取相应的比特位。
实现代码如下:

int is_invert(M4 *MT) {
	int flag;
	M4 temp;
	copyM4(MT, &temp);
	int row_index;
	//消除为下三角矩阵
	for (int k = 0; k < 4; k++) {
		if ((temp.M[k] & idM4[k]) != 0) {
			for (int i = k + 1; i < 4; i++)
			{
				if ((temp.M[i] & idM4[k]) !=0) {
					temp.M[i] = temp.M[i] ^ temp.M[k];
				}
			}
		}
		else {
			flag = 1;
			for (int i = k + 1; i < 4; i++) {
				if ((temp.M[i] & idM4[k]) != 0) {
					swap4(i, k,&temp);
					flag = 0;
					break;
				}
			}
			if (flag) { 
				printf("\n矩阵不可逆\n");
				return 0; }
			for (int i = k + 1; i < 4; i++)
			{
				if ((temp.M[i] & idM4[k]) != 0) {
					temp.M[i] = temp.M[i] ^ temp.M[k];
				}
			}

		}
	}
	//判断对角线是否为0
	for (int i = 0; i < 4; i++) {
		if ((temp.M[i] & idM4[i]) == 0)
		{
			printf("\n矩阵不可逆\n");
			return 0;
		}
	}
	return 1;
}

求GF(2)上有限域矩阵的可逆矩阵

在矩阵可逆的前提下,我们可以计算GF(2)有限域上的可逆矩阵,需要把矩阵扩展为 [ M ∣ E ] [M|E] [ME],然后经过变化变为 [ E ∣ M − 1 ] [E|M^{-1}] [EM1] M − 1 M^{-1} M1即为可逆矩阵,为了减少代码复杂度,这里我们不单独构造一个扩展矩阵 [ M ∣ E ] [M|E] [ME],我们定义一个单位矩阵E,在每次M进行变化时,E跟着M进行变化,当M变为E时,E就变成了 M − 1 M^{-1} M1.
求解步骤如下
1)将矩阵化简为下三角矩阵
2)将矩阵化为单位矩阵E
求解详细思路参考上篇文章,代码实现如下:

void getInvertMatrix(M4 *MT) {
	M4 M_invert;
	for (int i = 0; i < 4; i++)
	{
		M_invert.M[i] = idM4[i];//初始化 E矩阵
	}
	for (int k = 0; k < 4; k++) {
		if (((*MT).M[k] & idM4[k]) != 0) {
			for (int i = k + 1; i < 4; i++)
			{
				if (((*MT).M[i] & idM4[k]) != 0) {
					(*MT).M[i] = (*MT).M[i] ^ (*MT).M[k];
					M_invert.M[i] = M_invert.M[i] ^ M_invert.M[k];
				}
			}
		}
		else {

			for (int i = k + 1; i < 4; i++) {
				if (((*MT).M[i] & idM4[k]) != 0) {
					swap4(i, k, MT);
					swap4(i, k, &M_invert);
					break;
				}
			}
			for (int i = k + 1; i < 4; i++)
			{
				if (((*MT).M[i] & idM4[k]) != 0) {
					(*MT).M[i] = (*MT).M[i] ^ (*MT).M[k];
					M_invert.M[i] = M_invert.M[i] ^ M_invert.M[k];
				}

			}
		}
	}
	//将右边的M矩阵,消除为单位矩阵E
	for (int  k = 1; k < 4; k++)
	{
		for (int i = 0; i < k; i++)
		{
			for (int j = 0; j < 4; j++)
			{
				if (((*MT).M[i]&idM4[k]) != 0){
				(*MT).M[i] = (*MT).M[i] ^ (*MT).M[k];
				M_invert.M[i] = M_invert.M[i] ^ M_invert.M[k];
				}
			}
		}
	}
	printf("\n可逆矩阵为\n");
	printfM4(&M_invert);
}

最终实验结果如下,将每个数化为4位二进制数,即可得到4x4的可逆矩阵
请添加图片描述

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值