模式分类笔记 -- 统计学习(1)

一个linear threshold gate (LTG)可以用来把向量输入映射到二进制输出。

LTG

以太泛化的模型或情况来讨论只能掩盖其初始的动机和灵光。Treating a more general case will only obscure the basic ideas.

如果我们考虑这样的一个方程,y(x1, x2, x3) = x1'x2 + x2x3'(这里用‘来表示求反), x1,x2, x3取【0,1】。

那么三个变量就有2的3次方种组合,那么对于n个变量,则存在 m=2的n次方 个组合,LTG-example

当然这里n都是些二元变量,存在着2的m次方个不同的方式来把这m种组合标记成两种

不同的类别。又是一种排列组合。这个boolean function是线性可分的,例如右面这个

LTG实现,当然这个LTG只是众多可以用来完成划分的LTG中的一个。

一个单独的n维输入LTG只能表达这2的m次方个布尔方程的一个小子集 。能够被LTG表达的布尔方程是线性可分系统。比如说异或问题就不是线性可分的,这样的布尔方程成为non-threshold方程,反之就是threshold方程。当n->无穷时,能被threshold function表示的布尔方程与全体布尔方程的比值的极限等于0.这点我们可以从下面的自由度之比看出来。

有些逻辑门是可以被LTG表示的,比如说NAND (or NOR),这说明LTG也是一个普遍的逻辑门,any Boolean function is realizable using a network of LTG's (only two logic levels are needed)。除了NAND (or NOR), LTG还能实现一些更复杂的逻辑门,因此一个n输入的LTG比n输入的NAND (or NOR)更加powerful

 

考虑到很大的n时,线性可分性比例很小,所以我们应尝试设计一些更加powerful的逻辑门来实现non-threshold function,这可以通过扩展LTG的输入来实现 ,比如我们可以提供输入的积(products)或者与(andings)作为新输入提供给LTG,这显然就已经破坏了线性形式,:)。在这种情况下,我们需要一个固定的预处理与门层来增加输入空间的维度,我们期望这个新boolean function变成一个thershold function, 那么他就可以用一个LTG实现。这样QTG诞生了。

 

Quadratic Threshold Gates(QTG):

 

QTG-R(n)      QTG-Boolean(n)

 

x属于实数域和布尔域的时候,double summation term中index j 的范围不一样,首先他们都把xixj与xjxi(i<>j)看作一项,另外你发现在boolean域,把xixj(i = j)这项在后面也排除掉了,这是因为布尔域里xi *xi = xi, xi项在前面的一阶多项式里已经出现了。

 

 

LTG与QTG的自由度(参数数目)对比表格。

Threshold gate Number of degrees of freedom/parameters (including threshold -- 就是多项式里的b)
LTGn + 1
QTG Degrees of freedom-QTG-R(n)Degrees of freedom-QTG-B(n)

 

上面的QTG自由度就是简单的加加就出来了,贴在那里貌似很突兀。

 

我们可以看到产生的booleanfunction自由度(parameter)的数目明显增大,我们继而推广到Polynomial Threshold

Gates(PTG),PTG变成了一个很强大的门(gate)。

 

PTG

 

PTG的自由度:

 

Degree of freedom -PTG- R(n)

Degree of freedom -PTG- B(n)         

 

组合记法 表示m个点中每个取k时组合的数目,方便的记法而已。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值