【自考】数据结构第四章判定树和哈夫曼树,期末不挂科指南,第8篇

这篇博客介绍了判定树和哈夫曼树在自考中的重要性,特别是哈夫曼算法的详细步骤,强调了哈夫曼树的不唯一性和权值最小的原则。通过实例解释了哈夫曼编码的生成过程,提供了不同频率字符的哈夫曼编码,并总结了哈夫曼编码的关键点和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

判定树和哈夫曼树

分类与判定树

这个小节有个比较重要的概念,就是用于描述分类过程的二叉树称为判定树 记住即可

哈夫曼树与哈夫曼算法

首先了解一下什么是哈夫曼树

给定一组值p1,…pk,如何构造一棵有k个叶子且分别以这些值为权的判定树,使得其平均比较次数最小。满足上述条件的判定树称为哈夫曼树。
哈夫曼率先给出了一个求哈夫曼树的简单而有效的方法,称为哈夫曼算法。

非形式的描述如下

  1. 给定的值{p1,p2,…,pk}构造森林{T1,T2,Tk},其中每个Ti为一棵只有根结点且其权为pi的二叉树。
  2. 从F中选取根结点的权最小的两棵二叉树Ti和Tj,构造一棵分别以Ti和Tj为左、右子树的新的二叉树Th,置Th根结点的权为Ti,Tj根结点的权值之和。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦想橡皮擦

如有帮助,来瓶可乐

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值