详解,python求矩阵的秩,你肯定能看懂

本文介绍了在Python中使用NumPy库计算矩阵秩的几种方法,包括numpy.linalg.matrix_rank()函数、SVD分解和QR分解。还提到了原生Python的高斯消元法,并讨论了各种方法的适用场景和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在 Python 中,可以使用 NumPy 库求矩阵的秩。
NumPy 库提供了 numpy.linalg.matrix_rank() 函数,该函数可以计算矩阵的秩。

矩阵的秩 是矩阵中独立行(列)的数量,它是一个数学概念,用于评估矩阵的线性相关性。
秩可以用于确定矩阵是否可逆,以及矩阵的解的存在性和唯一性。

Python Numpy 库求矩阵的秩

import numpy as np

matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
rank = np.linalg.matrix_rank(matrix)
print("Rank of the matrix:", rank)

代码运行结果如下:

Rank of the matrix: 2

如果使用的是非方阵(即具有不同行数和列数的矩阵),则必须将其转换为二维数组才能使用 numpy.linalg.matrix_rank() 函数。

SVD 分解求矩阵的秩

使用 numpy 库中的 svd() 函数进行奇异值分解(SVD),然后对分解后的矩阵中的奇异值进行秩的统计:

import numpy as np

matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
U, s, V = np.linalg.svd(matrix)
rank = np.sum(s > 1e-10)
print("Rank of the matrix:", rank)

QR 分解求矩阵的秩

使用 numpy 库中的 qr() 函数进行 QR 分解,然后计算分解后的矩阵的秩:

import numpy as np

matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
Q, R = np.linalg.qr(matrix)
rank = np.linalg.matrix_rank(R)
print("Rank of the matrix:", rank)

SVD 分解和 QR 分解这两种方法的计算代价比 numpy.linalg.matrix_rank() 函数更高,因此如果我们的数据规模很大,建议使用 numpy.linalg.matrix_rank() 函数。

原生 Python 求矩阵的秩

使用消元法(例如高斯消元法)求解矩阵的秩。
在这种方法中,可以将矩阵转化为上三角矩阵,并计算非零行数。

非零行数就是矩阵的秩。

下面代码使用高斯消元法求解矩阵秩的示例代码:

def rank(matrix):
    m, n = len(matrix), len(matrix[0])
    for i in range(min(m, n)):
        pivot = i
        for j in range(i + 1, m):
            if abs(matrix[j][i]) > abs(matrix[pivot][i]):
                pivot = j
        if matrix[pivot] != matrix[i]:
            matrix[i], matrix[pivot] = matrix[pivot], matrix[i]
        for j in range(i + 1, m):
            f = matrix[j][i] / matrix[i][i]
            for k in range(i + 1, n):
                matrix[j][k] -= matrix[i][k] * f
            matrix[j][i] = 0
    return sum(1 for row in matrix if any(row))


matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
print("Rank of the matrix:", rank(matrix))

该算法的时间复杂度为 O ( m n 2 ) O(mn^2) O(mn2),如果数据规模很大,该算法可能会很慢。

总结

📢📢📢📢📢📢
💗 你正在阅读 【梦想橡皮擦】 的博客
👍 阅读完毕,可以点点小手赞一下
🌻 发现错误,直接评论区中指正吧
📆 橡皮擦的第 866 篇原创博客

👇 全网 6000+人正在学习的 爬虫专栏 👇👇👇👇

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦想橡皮擦

如有帮助,来瓶可乐

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值