阿里云天池实验室训练自己的数据

本文章的所有代码和相关文章, 仅用于经验技术交流分享,禁止将相关技术应用到不正当途径,滥用技术产生的风险与本人无关。
本文章是自己学习的一些记录。

开始

前几天做实验训练使用google的服务器时间上到了总是掉,然后那天我的室友“画画的baby”和我说有一个类似于google colab的平台,可以训练,虽然也有8小时的显示,但是这两个我可以替换使用,甚至一起跑实验 显卡配置也可以 满足我的需求 这个平台就是
阿里云天池实验室

阿里天池实验室

这个就自己百度阿里云打开网站,选择天池Notebook:
在这里插入图片描述

然后点击我的实验室,图右红框为最近建立的项目:
在这里插入图片描述

进入下面的界面后点击新建,就会出现红色箭头的项目,一般想跑自己的项目就可以设置成私有,完成后点击右侧蓝色编辑框,即可进入界面:
在这里插入图片描述

进入到这个界面就可以看到一些基本的操作空间,点击file可以新建jupyter notebook,点击帮助文档,里面会有一些常见的问题和操作。新建之后就可以查看你的文件路径 或者点击新建终端terminal也可以
在这里插入图片描述

这里说明

说明一下,阿里云天池实验室你自己想要上传文件需要打包尽心解压,解压命令为

!unzip 你的导包文件名.zip

解压后可以查看路径进行操作。

新建终端

在这里插入图片描述
使用pwd命令进行操作显示路劲,ls命令查看文件下的目录

新建好jupyter Notebook

新建好notebook
查看所安装的包:

!pip list

在这里插入图片描述
查看gpu信息:

!nvidia-smi

在这里插入图片描述
查看gpu能否使用:

import tensorflow as tf
print(tf.test.is_gpu_available())

返回True则可以使用

查看路径:

!pwd

在这里插入图片描述

进入路径:

import os
os.chdir("路径")

安装包

比如说安装tensorflow-gpu

!pip install tensorflow-gpu==1.13.1 --user

安装tensorflow

!pip install tensorflow==1.13.1 --user

训练

训练的话按照平时执行的方法就行

!python xxx.py

显示GPU已加载
在这里插入图片描述
开始训练:
在这里插入图片描述
训练产生的文件:
在这里插入图片描述

由于这个阿里云只有5G的空间 大家的数据不要太大了
总之免费的使用,也是可以了 主要是要使用GPU

后期有新的发现技巧会更新上来。

### 天池实验室上传本地项目的具体方法和流程 #### 一、准备工作 在将本地项目上传到阿里天池实验室之前,需完成以下准备事项: - **安装 Docker**:确保本地已安装并配置好 Docker 环境。如果尚未安装,请访问[Docker官网](https://www.docker.com/)下载适合的操作系统版本[^2]。 - **注册阿里云容器服务**:通过阿里云官方网站注册并开通容器镜像服务账户[^1]。 --- #### 二、创建容器镜像仓库 1. 登录阿里云容器镜像服务控制台(地址:<https://cr.console.aliyun.com>),进入“实例管理”页面。 2. 创建一个新的命名空间,并在此命名空间下建立私有镜像仓库。 3. 设置仓库权限为公开或私有模式,依据实际需求决定。 --- #### 三、构建与推送镜像 1. 将本地代码整理成可执行环境的形式,编写 `Dockerfile` 文件定义运行所需的依赖项以及启动命令。例如: ```dockerfile # 使用基础Python镜像作为起点 FROM python:3.8-slim # 安装必要的库文件 COPY requirements.txt /app/ WORKDIR /app RUN pip install --no-cache-dir -r requirements.txt # 添加应用源码至镜像中 COPY . . # 设定默认入口脚本 CMD ["python", "main.py"] ``` 2. 构建 Docker 镜像: 执行以下命令来生成镜像,其中 `<your_image_name>` 是自定义名称标签。 ```bash docker build -t <your_image_name>:latest . ``` 3. 推送镜像到远程仓库前先登录阿里云镜像服务: ```bash docker login --username=<aliyun_account> registry.cn-hangzhou.aliyuncs.com ``` 4. 给本地镜像打上目标仓库的全名标记: ```bash docker tag <your_local_image_id> registry.cn-hangzhou.aliyuncs.com/<namespace>/<repository>:<tag> ``` 5. 最终推送到云端存储位置: ```bash docker push registry.cn-hangzhou.aliyuncs.com/<namespace>/<repository>:<tag> ``` 上述过程完成后,您的代码已经被成功部署到了指定的阿里云容器镜像仓库之中。 --- #### 四、提交镜像地址给天池平台 当一切就绪之后,在天池比赛提交界面填写相关信息: - 输入完整的镜像 URL 地址; - 提供对应的用户名及密码用于验证身份; 随后点击确认按钮等待后台拉取最新版镜像并开始评估作业性能表现情况[^3]。 --- ### 注意事项 - 如果遇到网络连接失败或者认证错误等问题,请仔细核对每一步骤中的参数准确性。 - 对于 Windows 用户来说可能还需要额外调整一些兼容性的设置选项才能顺利完成整个操作链条。 ---
评论 35
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值