阿里云天池机器学习训练营任务一

机器学习算法(一): 基于逻辑回归的分类预测

1 逻辑回归的介绍和应用

1.1 逻辑回归的介绍

逻辑回归(Logistic regression,简称LR)虽然其中带有"回归"两个字,但逻辑回归其实是一个分类模型,并且广泛应用于各个领域之中。虽然现在深度学习相对于这些传统方法更为火热,但实则这些传统方法由于其独特的优势依然广泛应用于各个领域中。

而对于逻辑回归而且,最为突出的两点就是其模型简单模型的可解释性强

逻辑回归模型的优劣势:

  • 优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低;
  • 缺点:容易欠拟合,分类精度可能不高

1.1 逻辑回归的应用

逻辑回归模型广泛用于各个领域,包括机器学习,大多数医学领域和社会科学。例如,最初由Boyd 等人开发的创伤和损伤严重度评分(TRISS)被广泛用于预测受伤患者的死亡率,使用逻辑回归 基于观察到的患者特征(年龄,性别,体重指数,各种血液检查的结果等)分析预测发生特定疾病(例如糖尿病,冠心病)的风险。逻辑回归模型也用于预测在给定的过程中,系统或产品的故障的可能性。还用于市场营销应用程序,例如预测客户购买产品或中止订购的倾向等。在经济学中它可以用来预测一个人选择进入劳动力市场的可能性,而商业应用则可以用来预测房主拖欠抵押贷款的可能性。条件随机字段是逻辑回归到顺序数据的扩展,用于自然语言处理。

逻辑回归模型现在同样是很多分类算法的基础组件,比如 分类任务中基于GBDT算法+LR逻辑回归实现的信用卡交易反欺诈,CTR(点击通过率)预估等,其好处在于输出值自然地落在0到1之间,并且有概率意义。模型清晰,有对应的概率学理论基础。它拟合出来的参数就代表了每一个特征(feature)对结果的影响。也是一个理解数据的好工具。但同时由于其本质上是一个线性的分类器,所以不能应对较为复杂的数据情况。很多时候我们也会拿逻辑回归模型去做一些任务尝试的基线(基础水平)。

说了这些逻辑回归的概念和应用,大家应该已经对其有所期待了吧,那么我们现在开始吧!!!

2 学习目标

  • 了解 逻辑回归 的理论
  • 掌握 逻辑回归 的 sklearn 函数调用使用并将其运用到鸢尾花数据集预测

3 代码流程

  • Part1 Demo实践
    • Step1:库函数导入
    • Step2:模型训练
    • Step3:模型参数查看
    • Step4:数据和模型可视化
    • Step5:模型预测
  • Part2 基于鸢尾花(iris)数据集的逻辑回归分类实践
    • Step1:库函数导入
    • Step2:数据读取/载入
    • Step3:数据信息简单查看
    • Step4:可视化描述
    • Step5:利用 逻辑回归模型 在二分类上 进行训练和预测
    • Step5:利用 逻辑回归模型 在三分类(多分类)上 进行训练和预测

4 算法实战

4.1 Demo实践

Step1:库函数导入

1

##  基础函数库

2

import numpy as np 

3

4

## 导入画图库

5

import matplotlib.pyplot as plt

6

import seaborn as sns

7

8

## 导入逻辑回归模型函数

9

from sklearn.linear_model import LogisticRegression

Step2:模型训练

1

##Demo演示LogisticRegression分类

2

3

## 构造数据集

4

x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])

5

y_label = np.array([0, 0, 0, 1, 1, 1])

6

7

## 调用逻辑回归模型

8

lr_clf = LogisticRegression()

9

10

## 用逻辑回归模型拟合构造的数据集

11

lr_clf = lr_clf.fit(x_fearures, y_label) #其拟合方程为 y=w0+w1*x1+w2*x2

Step3:模型参数查看

1

## 查看其对应模型的w

2

print('the weight of Logistic Regression:',lr_clf.coef_)

3

4

## 查看其对应模型的w0

5

print('the intercept(w0) of Logistic Regression:',lr_clf.intercept_)
the weight of Logistic Regression: [[0.73455784 0.69539712]]

the intercept(w0) of Logistic Regression: [-0.13139986]

Step4:数据和模型可视化

1

## 可视化构造的数据样本点

2

plt.figure()

3

plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')

4

plt.title('Dataset')

5

plt.show()

1

# 可视化决策边界

2

plt.figure()

3

plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')

4

plt.title('Dataset')

5

6

nx, ny = 200, 100

7

x_min, x_max = plt.xlim()

8

y_min, y_max = plt.ylim()

9

x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))

10

11

z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()])

12

z_proba = z_proba[:, 1].reshape(x_grid.shape)

13

plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

14

15

plt.show()

1

### 可视化预测新样本

2

3

plt.figure()

4

## new point 1

5

x_fearures_new1 = np.array([[0, -1]])

6

plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=50, cmap='viridis')

7

plt.annotate(s='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

8

9

## new point 2

10

x_fearures_new2 = np.array([[1, 2]])

11

plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=50, cmap='viridis')

12

plt.annotate(s='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

13

14

## 训练样本

15

plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')

16

plt.title('Dataset')

17

18

# 可视化决策边界

19

plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

20

21

plt.show()

Step5:模型预测

1

## 在训练集和测试集上分别利用训练好的模型进行预测

2

y_label_new1_predict = lr_clf.predict(x_fearures_new1)

3

y_label_new2_predict = lr_clf.predict(x_fearures_new2)

4

5

print('The New point 1 predict class:\n',y_label_new1_predict)

6

print('The New point 2 predict class:\n',y_label_new2_predict)

7

8

## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所以我们可以利用 predict_proba 函数预测其概率

9

y_label_new1_predict_proba = lr_clf.predict_proba(x_fearures_new1)

10

y_label_new2_predict_proba = lr_clf.predict_proba(x_fearures_new2)

11

12

print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba)

13

print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)
The New point 1 predict class:

 [0]

The New point 2 predict class:

 [1]

The New point 1 predict Probability of each class:

 [[0.69567724 0.30432276]]

The New point 2 predict Probability of each class:

 [[0.11983936 0.88016064]]

可以发现训练好的回归模型将X_new1预测为了类别0(判别面左下侧),X_new2预测为了类别1(判别面右上侧)。其训练得到的逻辑回归模型的概率为0.5的判别面为上图中蓝色的线。

4.2 基于鸢尾花(iris)数据集的逻辑回归分类实践

在实践的最开始,我们首先需要导入一些基础的函数库包括:numpy (Python进行科学计算的基础软件包),pandas(pandas是一种快速,强大,灵活且易于使用的开源数据分析和处理工具),matplotlib和seaborn绘图。

Step1:库函数导入

1

##  基础函数库

2

import numpy as np 

3

import pandas as pd

4

5

## 绘图函数库

6

import matplotlib.pyplot as plt

7

import seaborn as sns

本次我们选择鸢花数据(iris)进行方法的尝试训练,该数据集一共包含5个变量,其中4个特征变量,1个目标分类变量。共有150个样本,目标变量为 花的类别 其都属于鸢尾属下的三个亚属,分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。包含的三种鸢尾花的四个特征,分别是花萼长度(cm)、花萼宽度(cm)、花瓣长度(cm)、花瓣宽度(cm),这些形态特征在过去被用来识别物种。

变量描述
sepal length花萼长度(cm)
sepal width花萼宽度(cm)
petal length花瓣长度(cm)
petal width花瓣宽度(cm)
target鸢尾的三个亚属类别,'setosa'(0), 'versicolor'(1), 'virginica'(2)

Step2:数据读取/载入

1

## 我们利用 sklearn 中自带的 iris 数据作为数据载入,并利用Pandas转化为DataFrame格式

2

from sklearn.datasets import load_iris

3

data = load_iris() #得到数据特征

4

iris_target = data.target #得到数据对应的标签

5

iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式

Step3:数据信息简单查看

1

## 利用.info()查看数据的整体信息

2

iris_features.info()
<class 'pandas.core.frame.DataFrame'>

RangeIndex: 150 entries, 0 to 149

Data columns (total 4 columns):

 #   Column             Non-Null Count  Dtype  

---  ------             --------------  -----  

 0   sepal length (cm)  150 non-null    float64

 1   sepal width (cm)   150 non-null    float64

 2   petal length (cm)  150 non-null    float64

 3   petal width (cm)   150 non-null    float64

dtypes: float64(4)

memory usage: 4.8 KB

1

## 进行简单的数据查看,我们可以利用 .head() 头部.tail()尾部

2

iris_features.head()

[11]:

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)
05.13.51.40.2
14.93.01.40.2
24.73.21.30.2
34.63.11.50.2
45.03.61.40.2

,

1

iris_features.tail()

[12]:

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)
1456.73.05.22.3
1466.32.55.01.9
1476.53.05.22.0
1486.23.45.42.3
1495.93.05.11.8

,

1

## 其对应的类别标签为,其中0,1,2分别代表'setosa', 'versicolor', 'virginica'三种不同花的类别。

2

iris_target

[13]:

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
,       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
,       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
,       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
,       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
,       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
,       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

1

## 利用value_counts函数查看每个类别数量

2

pd.Series(iris_target).value_counts()

[14]:

2    50
,1    50
,0    50
,dtype: int64

1

## 对于特征进行一些统计描述

2

iris_features.describe()

[15]:

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)
count150.000000150.000000150.000000150.000000
mean5.8433333.0573333.7580001.199333
std0.8280660.4358661.7652980.762238
min4.3000002.0000001.0000000.100000
25%5.1000002.8000001.6000000.300000
50%5.8000003.0000004.3500001.300000
75%6.4000003.3000005.1000001.800000
max7.9000004.4000006.9000002.500000

,

从统计描述中我们可以看到不同数值特征的变化范围。

Step4:可视化描述

1

## 合并标签和特征信息

2

iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改

3

iris_all['target'] = iris_target

1

## 特征与标签组合的散点可视化

2

sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target')

3

plt.show()

从上图可以发现,在2D情况下不同的特征组合对于不同类别的花的散点分布,以及大概的区分能力。

1

for col in iris_features.columns:

2

    sns.boxplot(x='target', y=col, saturation=0.5,palette='pastel', data=iris_all)

3

    plt.title(col)

4

    plt.show()

利用箱型图我们也可以得到不同类别在不同特征上的分布差异情况。

1

# 选取其前三个特征绘制三维散点图

2

from mpl_toolkits.mplot3d import Axes3D

3

4

fig = plt.figure(figsize=(10,8))

5

ax = fig.add_subplot(111, projection='3d')

6

7

iris_all_class0 = iris_all[iris_all['target']==0].values

8

iris_all_class1 = iris_all[iris_all['target']==1].values

9

iris_all_class2 = iris_all[iris_all['target']==2].values

10

# 'setosa'(0), 'versicolor'(1), 'virginica'(2)

11

ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa')

12

ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor')

13

ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica')

14

plt.legend()

15

16

plt.show()

Step5:利用 逻辑回归模型 在二分类上 进行训练和预测

1

## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。

2

from sklearn.model_selection import train_test_split

3

4

## 选择其类别为0和1的样本 (不包括类别为2的样本)

5

iris_features_part = iris_features.iloc[:100]

6

iris_target_part = iris_target[:100]

7

8

## 测试集大小为20%, 80%/20%分

9

x_train, x_test, y_train, y_test = train_test_split(iris_features_part, iris_target_part, test_size = 0.2, random_state = 2020)

1

## 从sklearn中导入逻辑回归模型

2

from sklearn.linear_model import LogisticRegression

1

## 定义 逻辑回归模型 

2

clf = LogisticRegression(random_state=0, solver='lbfgs')

1

# 在训练集上训练逻辑回归模型

2

clf.fit(x_train, y_train)

[23]:

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
,                   intercept_scaling=1, l1_ratio=None, max_iter=100,
,                   multi_class='auto', n_jobs=None, penalty='l2',
,                   random_state=0, solver='lbfgs', tol=0.0001, verbose=0,
,                   warm_start=False)

1

## 查看其对应的w

2

print('the weight of Logistic Regression:',clf.coef_)

3

4

## 查看其对应的w0

5

print('the intercept(w0) of Logistic Regression:',clf.intercept_)
the weight of Logistic Regression: [[ 0.45181973 -0.81743611  2.14470304  0.89838607]]

the intercept(w0) of Logistic Regression: [-6.53367714]

1

## 在训练集和测试集上分布利用训练好的模型进行预测

2

train_predict = clf.predict(x_train)

3

test_predict = clf.predict(x_test)

1

from sklearn import metrics

2

3

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果

4

print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))

5

print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

6

7

## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)

8

confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)

9

print('The confusion matrix result:\n',confusion_matrix_result)

10

11

# 利用热力图对于结果进行可视化

12

plt.figure(figsize=(8, 6))

13

sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')

14

plt.xlabel('Predicted labels')

15

plt.ylabel('True labels')

16

plt.show()
The accuracy of the Logistic Regression is: 1.0

The accuracy of the Logistic Regression is: 1.0

The confusion matrix result:

 [[ 9  0]

 [ 0 11]]

我们可以发现其准确度为1,代表所有的样本都预测正确了。

Step6:利用 逻辑回归模型 在三分类(多分类)上 进行训练和预测

1

## 测试集大小为20%, 80%/20%分

2

x_train, x_test, y_train, y_test = train_test_split(iris_features, iris_target, test_size = 0.2, random_state = 2020)

1

## 定义 逻辑回归模型 

2

clf = LogisticRegression(random_state=0, solver='lbfgs')

1

# 在训练集上训练逻辑回归模型

2

clf.fit(x_train, y_train)

[29]:

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
,                   intercept_scaling=1, l1_ratio=None, max_iter=100,
,                   multi_class='auto', n_jobs=None, penalty='l2',
,                   random_state=0, solver='lbfgs', tol=0.0001, verbose=0,
,                   warm_start=False)

1

## 查看其对应的w

2

print('the weight of Logistic Regression:\n',clf.coef_)

3

4

## 查看其对应的w0

5

print('the intercept(w0) of Logistic Regression:\n',clf.intercept_)

6

7

## 由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类。
the weight of Logistic Regression:

 [[-0.45928925  0.83069886 -2.26606531 -0.9974398 ]

 [ 0.33117319 -0.72863423 -0.06841147 -0.9871103 ]

 [ 0.12811606 -0.10206463  2.33447679  1.9845501 ]]

the intercept(w0) of Logistic Regression:

 [  9.43880677   3.93047364 -13.36928041]

1

## 在训练集和测试集上分布利用训练好的模型进行预测

2

train_predict = clf.predict(x_train)

3

test_predict = clf.predict(x_test)

4

5

## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所有我们可以利用 predict_proba 函数预测其概率

6

train_predict_proba = clf.predict_proba(x_train)

7

test_predict_proba = clf.predict_proba(x_test)

8

9

print('The test predict Probability of each class:\n',test_predict_proba)

10

## 其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。

11

12

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果

13

print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))

14

print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))
The test predict Probability of each class:

 [[1.03461734e-05 2.33279475e-02 9.76661706e-01]

 [9.69926591e-01 3.00732875e-02 1.21676996e-07]

 [2.09992547e-02 8.69156617e-01 1.09844128e-01]

 [3.61934870e-03 7.91979966e-01 2.04400685e-01]

 [7.90943202e-03 8.00605300e-01 1.91485268e-01]

 [7.30034960e-04 6.60508053e-01 3.38761912e-01]

 [1.68614209e-04 1.86322045e-01 8.13509341e-01]

 [1.06915332e-01 8.90815532e-01 2.26913667e-03]

 [9.46928070e-01 5.30707294e-02 1.20016057e-06]

 [9.62346385e-01 3.76532233e-02 3.91897289e-07]

 [1.19533384e-04 1.38823468e-01 8.61056998e-01]

 [8.78881883e-03 6.97207361e-01 2.94003820e-01]

 [9.73938143e-01 2.60617346e-02 1.22613836e-07]

 [1.78434056e-03 4.79518177e-01 5.18697482e-01]

 [5.56924342e-04 2.46776841e-01 7.52666235e-01]

 [9.83549842e-01 1.64500670e-02 9.13617258e-08]

 [1.65201477e-02 9.54672749e-01 2.88071038e-02]

 [8.99853708e-03 7.82707576e-01 2.08293887e-01]

 [2.98015025e-05 5.45900066e-02 9.45380192e-01]

 [9.35695863e-01 6.43039513e-02 1.85301359e-07]

 [9.80621190e-01 1.93787400e-02 7.00125246e-08]

 [1.68478815e-04 3.30167226e-01 6.69664295e-01]

 [3.54046163e-03 4.02267805e-01 5.94191734e-01]

 [9.70617284e-01 2.93824740e-02 2.42443967e-07]

 [2.56895205e-04 1.54631583e-01 8.45111522e-01]

 [3.48668490e-02 9.11966141e-01 5.31670105e-02]

 [1.47218847e-02 6.84038115e-01 3.01240001e-01]

 [9.46510447e-04 4.28641987e-01 5.70411503e-01]

 [9.64848137e-01 3.51516748e-02 1.87917880e-07]

 [9.70436779e-01 2.95624025e-02 8.18591606e-07]]

The accuracy of the Logistic Regression is: 0.9833333333333333

The accuracy of the Logistic Regression is: 0.8666666666666667

1

## 查看混淆矩阵

2

confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)

3

print('The confusion matrix result:\n',confusion_matrix_result)

4

5

# 利用热力图对于结果进行可视化

6

plt.figure(figsize=(8, 6))

7

sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')

8

plt.xlabel('Predicted labels')

9

plt.ylabel('True labels')

10

plt.show()
The confusion matrix result:

 [[10  0  0]

 [ 0  8  2]

 [ 0  2  8]]

通过结果我们可以发现,其在三分类的结果的预测准确度上有所下降,其在测试集上的准确度为:86.67%86.67%,这是由于'versicolor'(1)和 'virginica'(2)这两个类别的特征,我们从可视化的时候也可以发现,其特征的边界具有一定的模糊性(边界类别混杂,没有明显区分边界),所有在这两类的预测上出现了一定的错误。

5 重要知识点

逻辑回归 原理简介:

Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:logi(z)=11+e−zlogi(z)=11+e−z

其对应的函数图像可以表示如下:

1

import numpy as np

2

import matplotlib.pyplot as plt

3

x = np.arange(-5,5,0.01)

4

y = 1/(1+np.exp(-x))

5

6

plt.plot(x,y)

7

plt.xlabel('z')

8

plt.ylabel('y')

9

plt.grid()

10

plt.show()

通过上图我们可以发现 Logistic 函数是单调递增函数,并且在z=0的时候取值为0.5,并且logi(⋅)logi(⋅)函数的取值范围为(0,1)(0,1)。

而回归的基本方程为z=w0+∑Niwixiz=w0+∑iNwixi,

将回归方程写入其中为:p=p(y=1|x,θ)=hθ(x,θ)=11+e−(w0+∑Niwixi)p=p(y=1|x,θ)=hθ(x,θ)=11+e−(w0+∑iNwixi)

所以, p(y=1|x,θ)=hθ(x,θ)p(y=1|x,θ)=hθ(x,θ),p(y=0|x,θ)=1−hθ(x,θ)p(y=0|x,θ)=1−hθ(x,θ)

逻辑回归从其原理上来说,逻辑回归其实是实现了一个决策边界:对于函数 y=11+e−zy=11+e−z,当 z=>0z=>0时,y=>0.5y=>0.5,分类为1,当 z<0z<0时,y<0.5y<0.5,分类为0,其对应的yy值我们可以视为类别1的概率预测值.

对于模型的训练而言:实质上来说就是利用数据求解出对应的模型的特定的ww。从而得到一个针对于当前数据的特征逻辑回归模型。

而对于多分类而言,将多个二分类的逻辑回归组合,即可实现多分类。

END

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 阿里云天池大赛是一个非常有名的数据科学竞赛平台,其中机器学习竞赛是其中的一个重要组成部分。在这个竞赛中,参赛者需要使用机器学习算法来解决各种各样的问题,例如图像识别、自然语言处理、推荐系统等等。 机器学习竞赛的解题过程通常包括以下几个步骤: 1. 数据预处理:参赛者需要对提供的数据进行清洗、特征提取、数据转换等操作,以便于后续的建模和训练。 2. 模型选择:参赛者需要选择适合当前问题的机器学习算法,并对其进行调参和优化。 3. 模型训练:参赛者需要使用训练数据对模型进行训练,并对训练过程进行监控和调整。 4. 模型评估:参赛者需要使用测试数据对模型进行评估,以确定其在实际应用中的性能表现。 5. 结果提交:参赛者需要将最终的模型结果提交到竞赛平台上进行评估和排名。 在机器学习竞赛中,成功的关键在于对问题的深入理解和对机器学习算法的熟练掌握。同时,参赛者还需要具备良好的团队合作能力和沟通能力,以便于在竞赛中取得更好的成绩。 ### 回答2: 阿里云天池大赛是一个非常受欢迎的机器学习竞赛平台,它汇集了大量来自世界各地的数据科学家,分享了一系列有趣的竞赛和可用的数据集,供参赛选手使用。机器学习篇中,我们将解析一些常见的阿里云天池大赛题目,让大家对机器学习竞赛有更深入的了解。 一、赛题选取 阿里云天池大赛的赛题通常与商业、医疗等复杂领域相关,选择数据集时要了解行业背景和数据质量,以准确地判断模型的准确性和适用性。此外,在选择赛题时,还要考虑与参赛选手一起合作的可能性,以及他们可能使用的算法和技术。因此,为了成功解决赛题,参赛者应当仔细研究题目的背景、数据、分析目标等内容,有助于更好地理解问题及其解决方案。 二、数据清洗 参赛者在使用数据时,需要对其进行实质性的预处理和清洗工作,以减少不准确的数据对结果的影响。预处理和清洗包括基本的数据处理,例如缺失值、异常值和重复值的处理,还需要利用可视化和探索性数据分析等技术来检查数据的分布情况、相互关系和异常值等问题。 三、特征选择 在构建模型之前,参赛选手必须确定哪些特征会对问题的解决产生实际影响。这个过程称为特征选择,它旨在通过保留最相关的特征来减少模型复杂性,提高准确性,并且还有助于减少数据集的维数。特征选择包括基于统计学和机器学习的算法,同时应该考虑特征的相关性和重要性。 四、建模和评估 参赛者在解决问题时,需要考虑使用何种算法,以及如何构建对应的模型。此外,还需在不同的算法和模型之间进行比较,并选择最优模型。最后,应该针对模型进行评估,以确保各种重要性能指标(例如准确性,召回率,精确度等)都得到最佳表现。 总的来说,机器学习是一种复杂而令人兴奋的技术,参赛者要考虑数据质量、数据清洗、特征选择、建模和评估等诸多因素。通过参加阿里云天池大赛,大家可以不断学习和练习,不仅提升自己的技能,同时还有机会获得丰厚的奖励。 ### 回答3: 阿里云天池大赛是一个集数据竞赛、人才选拔、行业交流、技术分享、产学研合作等多种功能于一体的大型平台。其中,机器学习篇的赛题挑战包括了各种典型机器学习场景,旨在挖掘数据中价值,提高数据应用和解决实际问题的能力。 在机器学习篇的赛题中,常见的任务包括分类、回归、聚类、推荐等,其中分类问题是最常见的任务之一。分类可以分为二分类、多分类、超大规模分类等多个子类型。对于分类问题,大家需要学习分类算法,如KNN、NB、SVM、LR、GBDT、XGBoost等,并熟悉如何调参等技巧。 回归问题主要是根据给定的样本数据,预测一个连续的数值。回归问题旨在找到独立变量(X)和连续依赖变量(Y)之间的关系,以便使用该模型来预测连续依赖变量的值。对于回归问题,大家需要掌握线性回归、岭回归、Lasso回归、ElasticNet回归等算法。 聚类问题是将相似的数据划分到同一类别中,相似度较高,不同类别之间相似度较低。对于聚类问题,大家需要学习如何使用K-means、DBSCAN、Hierarchical聚类算法。 推荐问题是根据用户的行为习惯,预测用户的需求,以便将相应的内容推荐给用户。推荐问题的数据通常包括用户的行为、物品的属性和用户的评分。推荐问题常用的算法包括CF、ALS、LFM等。除此之外,还有深度学习在图像识别、语音识别、自然语言处理、推荐、游戏AI等方面具有广泛的应用,如CNN、RNN、LSTM、GAN等。 总之,机器学习篇的赛题挑战涉及到各种典型机器学习算法和应用场景,需要大家掌握基础理论和实践技巧,并多参加实战项目和比赛练习,不断提升自己的能力和水平。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值