两个数学家的问题,“你不知道我不知道你知道我知道”

已知两个1~30之间的数字,甲知道两数之和,乙知道两数之积。
甲问乙:“你知道是那两个数么?”乙说:不知道。
乙问甲:“你知道是那两个数么?”甲说:也不知道。
于是乙说:那我知道了
随后甲说:那我也知道了。
这两个数是什么?


允许两数重复的情况下,答案为 x=1,y=4。

甲知道和A=x+y=5,乙知道积B=x*y=4

不允许两数重复的情况下有两种答案

答案1:为x=1,y=6;甲知道和A=x+y=7,乙知道积B=x*y=6

答案2:为x=1,y=8;甲知道和A=x+y=9,乙知道积B=x*y=8


设这两个数为x,y.
甲知道两数之和 A=x+y;
乙知道两数之积 B=x*y;

该题分两种情况 :
允许重复, 有(1 <= x <= y <= 30);
不允许重复,有(1 <= x < y <= 30);
当不允许重复,即(1 <= x < y <= 30);

 

1)由题设条件:乙不知道答案 <=> B=x*y 解不唯一 => B=x*y 为非质数
   又∵ x ≠ y
  ∴ B ≠ k*k (其中k∈N)
 结论(推论1):B=x*y 非质数且 B ≠ k*k (其中k∈N)
 即:B ∈(6,8,10,12,14,15,18,20...)
 证明过程略。

 

2)由题设条件:甲不知道答案 <=> A=x+y 解不唯一 => A >= 5;
 分两种情况:
 A = 5, A = 6 时 x, y 有双解
 A >= 7 时 x, y 有三重及三重以上解
 假设 A=x+y=5
 则有双解
 x1=1,y1=4;
 x2=2,y2=3
 代入公式B=x*y:
 B1=x1*y1=1*4=4;(不满足推论1,舍去)
 B2=x2*y2=2*3=6;
 得到唯一解x=2,y=3即甲知道答案。
 与题设条件:"甲不知道答案"相矛盾 ,
 故假设不成立,A=x+y≠5
 假设 A=x+y=6
 则有双解:
 x1=1,y1=5;
 x2=2,y2=4
 代入公式B=x*y:
 B1=x1*y1=1*5=5;(不满足推论1,舍去)
 B2=x2*y2=2*4=8;
 得到唯一解x=2,y=4
 即甲知道答案
 与题设条件:"甲不知道答案"相矛盾
 故假设不成立,A=x+y≠6
 当A>=7时
 ∵ x,y的解至少存在两种满足推论1的解
 B1=x1*y1=2*(A-2)
 B2=x2*y2=3*(A-3)
 ∴ 符合条件
 结论(推论2):A >= 7

 

3)由题设条件:乙说“那我知道了”=>乙通过已知条件B=x*y及推论(1)(2)可以得出唯一解
 即:
 A=x+y, A >= 7
 B=x*y, B ∈(6,8,10,12,14,15,16,18,20...)
 1 <= x < y <= 30
 x, y存在唯一解
 当 B=6 时:有两组解
 x1=1,y1=6
 x2=2,y2=3 (∵ x2+y2=2+3=5 < 7∴不合题意,舍去)
 得到唯一解 x=1,y=6
 当 B=8 时:有两组解
 x1=1,y1=8
 x2=2,y2=4 (∵ x2+y2=2+4=6 < 7∴不合题意,舍去)
 得到唯一解 x=1,y=8
 当 B>8 时:容易证明均为多重解
 结论:
 当B=6时有唯一解 x=1,y=6当B=8时有唯一解 x=1,y=8

 

4)由题设条件:甲说“那我也知道了” => 甲通过已知条件 A=x+y 及推论(3)可以得出唯一解
 综上所述,原题所求有两组解:
 x1=1,y1=6
 x2=1,y2=8
 当x <=y时,有(1 <= x <= y <= 30);
 同理可得唯一解 x=1,y=4

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
数学建模优秀论文 本节主要讲解数学建模竞赛应该如何准备以及分工的问题。很多新来的学生 都会问我这个问题,数学建模好难、我不会建模、我数学底子很差。其实,我觉 得由于从小学到高中的教育,很容易把数学建模等同于数学竞赛。这两者其实真 的天差地别,如果说数学竞赛更多的是一种智力的比拼,那么数学建模更多的是 一共系统与工程协调的比拼。粗俗点说,前者就是做题,后者则是科研。 数学建模主要分为三个方向,建模,编程,以及写作。我们通常看到数学建 模证书上面有三个人的名字 xxx,xxx,xxx。如果按照传统思想排队,一般第一 个人负责建模,第二个人负责编程,第三个人负责写作。其实三个人在队伍中的 地位是平等的,所以国奖证书很人性化地把大家的名字都排在自己队伍的第一位。 下面具体说说建模、编程以及写作。 建模主要是需要构建出一个数学模型,这个模型可以是一组方程,可以是一 个可操作的框架,也可以是一个函数。总而言之,能用数学解决问题的一种抽象 方法,就是数学模型。我们高中学的物理,在解物理题的过程,其实就是数学建 模的过程。比如 2016 年国赛 A 题的第一问,只要用到高中物理的正交分解法, 列出水平方向以及竖直方向的精力平衡,即可解决该问题。我想,大家都是考上 本科的人了,最基础的物理还是会的吧?所以对于建模的同学来说,并不要求你 的数学功底有多么的好,但是需要你在培训或者自学期间,多涉猎一些模型(不 求计算或者推导,只求能有一定的印象,只要这个模型应该用在什么地方即可。) 这样,到了真正比赛的时候,想到用什么方法,结合网络等资源便可以迅速学习 出相关的模型理论,经过自己的一定创新,便可以较好地解决所需要完成的任务。 编程这一块是韩同学的强项。我只谈谈作为建模为主,但是要懂一些编程的 人应该达到的编程水平。严格来说,写 MATLAB 代码还做不到完全脱离书本的水 平。但是我已经具备了看到一大段代码,自己对其中的部分语句进行修改,为我 所用,实现自己想要的功能。对于建模比赛来说,达到这种水平一般来说是够用 了,只要在编程同学写程序的时候,建模的同学可以检查 MATLAB 代码是否符合 数学模型的要求,而不是单纯的代码堆积。如果是计算机或者软件方向的学生, 那么就尽可能地多学习 MATLAB 有关知识,能够自己独立写出代码并且调试错误 那么是再好不过的了。 写作这一块是专门为文科生或者女生准备的福利,其实不管你的模型多么华 丽,不管你的程序复杂度多么地低,如果无法形成一篇语句流畅,图文并茂的论 文出来。你还是只有拿成功参赛奖的命。如果说建模与编程的同学决定了获奖的 11 上限,那么写作的同学则决定了获奖的下限。一篇排版以及语句优秀的论文,可 以让评委老师眼前一亮,迅速获得好评。在国赛中,由于不放心论文,所以两次 论文写作均是我个人操刀,其实两次论文都存在一定的遗憾。如果有一位细心的 女同学可以帮助另外两名队友写作并且细心排版,那么论文的水平将会更上一层 楼。同时,我希望写作的队员不要完全不顾数学,在比赛期间,还是应该或多或 少知道一些建模以及编程人的思路,即使提不出什么意见,也有助于清晰写作的 框架。 上面为不同方向的队员应该是怎样的以及如何准备。而且我建议三名小组成 员最好是从大一一直打到大四的比赛,只有磨合默契的队友,才更有希望冲击国 奖甚至国一。 四、 数学建模竞赛比赛技巧 既然这是谈建模竞赛,那么我还是需要谈一谈应试技巧的话题,对于代做或 者直接抄袭他人作品的行为我是十分反对的(不能以身试法,否则不仅损害个人 名誉,损害学弟学妹参赛资格,更加损害学校的声誉)。 1.选题机灵点,在选题前,建议先上知网等学术网站对相关话题进行查找, 如果相关文献较多,那么则更容易从中获得灵感,建立出属于自己的模 型(如果用到了里面的公式或者模型,一定要引用)。不过这种做法存在 一个缺点,就是你这么想,难道别人不会这么想么?所以,最终大家的 论文虽然都是各自独立完成的,但是很容易出现结果差不多,图表差不 多,甚至模型差不多的情况。因此,这样很难分出优劣,对于拿国奖来 说,并不是十分有利。(一般国赛 A 题多为这种情况,如果想通过原创冲 击国奖,那么更应该选择可塑性高的问题,如 B 题)。 2.如要冲击国奖最好选择可塑性高的题,一般每年国赛的 B 题,都是方案 类问题,即使你在知网或者其他网站上找到相似的文献,但是仔细一看, 往往都是失望而归。因为 B 题一般都是热点问题:比如去年的互联网+打 车和今年的小区道路改造问题,都是以往不曾出现过的。所以,如果 B 题 你可以挖掘出别人挖掘不到的信息,并且建立出一个较为新颖的模型, 那么国一就是你的了。 3.一定要把第一题做对(做不对也要给出一个结果)!一定要写一篇较为完 整、格式较为清晰(哪怕只做了一问,也有文章)的论文。如果可以达 到上述要求,那么不论是什么建模比赛,奖状都有你的一份了。。。。但是 很遗憾,每年不管什么类型的比赛,很多同学连这一条也无法达到,所 以同学们应该反思自己,为什么拿不到奖了。 4.对于得不出较为理想的值,则应该从现在所做的所有工作中选一个数据 出来作为答案,并且附上理由。千万不要无端造出程序无法实现的答案 出来,如果万一进了国奖答辩,评委问你这个数据怎么得出来的,你总 不可以说是猜出来的吧? 5.每一次比赛,都认真做,不要总想着还有下一次的比赛可以做,做好每 一次的比赛,都是一次不错的锻炼。 6.写作的同学可以参考往届优秀论文,尤其以广西赛区的优秀论文为主, 学习他人的写作方式,这样可以让自己的论文风格,论文框架,论文排 版均接近国奖论文的素养。 12 7.编程的同学如果想使用他人的程序时,不妨学会其思想,自己设计新算 法并且实现功能。而且对于复杂的程序,最好在论文中附上一个程序框 图,方便评委老师理解。 8.建模的同学应该多多涉猎不同的文献,中文的,外文的最好都阅读以下, 然后自己在草稿纸上画一些思维导图,对这些文献之间的关系进行一定 的梳理,然后结合本问题分析,看看什么地方需要修改,什么地方需要 精简,什么地方需要补充等等。而且,建模的同学一定要尽量把模型程 序化,用一些编程同学听得懂的话进行沟通。比如我把今年 A 题第一问 从物理受力问题变成了迭代求解问题,这样编程的同学则会舒服很多 数学建模参考的书目以及网站 书籍 1.《 数学模型》姜启源等著 阅读人群:建模 这本书虽然被奉为数学建模最经典的入门书,但是我本人并不是十分喜欢。 第一,这本书的模型比较杂,而且可操作性较差。意思就是说,告诉你了理论, 你很难再实践中自己去操作。而且很多模型较为基础,对于短期内学习达到国赛 的强度难度较大,因此适合作为一本辅助参考性读物进行学习。如果,你要一个 字一个字读下去,会发现到头来还是什么都不太会(除了暑期培训的时候阅读过, 之后再也没有使用过了) 。 2.《数学建模算法与应用》司守奎等 阅读人群:建模、编程 是我最为推崇的书:《数学建模算法与应用》。这本书是司守奎老师写的新书, 司老师是数模一线教练,经常培养出国一国二。因此他的书与国赛风味十分贴近, 很多问题都是取自国赛原题,而且附上了所有程序的源代码,那本书中的光盘则 收入了所有程序的 m 文件(MATLAB 的源文件),实属业界良心(都省去了你抄源 代码的时间)。所以,这本书是可以用来临时抱佛脚的,如果你的目标就是在省 赛区取得一定的名次,那么这本书真的足够你用了(基本上每次比赛,我首先查 阅的必定是这本书)。 3.《数学建模》Frank R. Giordano 等著 叶其孝等译 阅读人群:建模 这本书是美赛负责人写的书,实际上我阅读这本书也觉得没有多大的意思, 和姜启源那本数学模型类似,不适合一页页阅读,更加适合提高建模的修养,但 是不适合用来准备数学建模国赛或者美赛。所以,如果你想要参加美赛,那么建 议你还是稍微看看,毕竟是美赛指定的参考书。 4.《 MATLAB 在数学建模中的应用》卓金武等著 阅读人群:编程 这本书和司守奎老师的那本书风格有点接近,例题基本选于国赛赛题,但是 这本书对于模型的介绍较少,主要都是给出 MATLAB 代码,每一章最后都有延伸 阅读,因此对于 MATLAB 感兴趣的同学可以将这本以及下一本作为入门参考书。 5. 《MATLAB R2014a 完全自学一本通》刘浩等著 阅读人群:编程 这本书是一本 MATLAB 工具书,并不完全针对数学建模,但是很多 MATLAB 使 用的小技巧都来自于这本书,比如今年我们画的锚链形状图,均来自这本书的灵 感。 6.《 20XX 年全国大学生数学建模竞赛广西赛区经验交流及优秀论文选》吕跃进 著 阅读人群:写作(最为重要)建模(参考) 编程(参考) 13 作为广西赛区优秀论文集,写作的同学尤其需要注意,广西赛区的优秀论文 都是长什么样子的?我们不需要先想着和其他赛区的人比,先学习自己赛区的人 的论文,可以让自己的起步稍微简单一些。XX 的意思就是某某年,一般从 20102015 年的左右参考下即可。 7.《全国各赛区优秀论文》 阅读人群:写作 建模 编程 当你学有余力时,不妨多看看其他省份优秀论文,找找差距,找到一个提高 建模水平的方向。 8.《正确写作美国大学生数学建模竞赛论文》&《美国大学生数学建模竞赛题解 析与研究》 王杰等著 阅读人群:建模 写作 这两本书作为美赛官方读物,非常适合美赛冲刺前 2 个月阅读,由于这套书 并没有给出源程序,因此只有写作以及建模的同学进行参考。尤其是《正确写作 美国大学生数学建模竞赛论文》这本书,非常适合写作的同学学习,其中有一些 写作习惯甚至可以用于国赛的写作中去。这本书还有一个特色就是讲解了部分有 关使用 LaTeX 的知识。 9.《 SPSS 统计分析基础教程》&《SPSS 统计分析高级教程》张文彤等著 阅读人 群:编程 这两本书手把手地教你如何使用 SPSS 分析数据,加上 SPSS 本身“傻瓜式” 设计,因此配合这两本书进行一定的学习足够了。 10.《 Origin9.1 科技绘图与数据分析》叶卫平著 阅读人群:编程 建模 如果在短时间之内学会一个软件并且可以进行比赛,那么 Origin 绝对是一 个利器。基本上涉及绘图的问题,大多数 MATLAB 可以完成的,它也可以完成。 几乎与 SPSS 一样的“傻瓜式”设计,非常适合初学者学习掌握。所以我认为建 模的同学多学一个绘图的软件也没有什么不好的(我们美赛的灵感出自这本书) 。 上面 10 本书希望绝大多数同学都可以涉猎一二,即使是枯燥的数学模型那 本书,最好也稍微看看,好歹有一些印象。而司老师那本书,我则希望人手一本。 下面的书籍由于时间成本还有与建模的关系不是那么紧密,所以参考即可。 11.《 SAS 统计分析实用宝典》 姚鑫峰等著 阅读人群:编程 作为最为专业统计软件 SAS,对于处理大数据问题的时候,是当仁不让的王 者,连 MATLAB 都要为其让路。如果你十分热衷于大数据的问题,还有想参加“汇 丰杯”SAS 数据分析大赛的同学,或者参加阿里巴巴天池大数据竞赛的同学不妨 以这本书作为基础,学习 SAS 吧。 12.《 R 语言实战》Robert I. Kabacoff 著 高涛译 阅读人群:编程 作为 SAS 的姊妹,R 语言作为免费开源的数据分析软件同样大受欢迎,如果 你不喜欢昂贵的 SAS,那么投入 R 的怀抱也不错。 13.《物理学原理在工程技术中的应用》马文蔚等著 阅读人群:建模(尤其喜欢 A 题的同学) 本来是不太想把物理类的专业书引入到数学建模竞赛中来,无奈自从 2014 年开始,每年国赛 A 题的问题都是物理问题(可以认为是纯物理问题),2014 年, 卫星变轨问题(万有引力与航天)。2015 年,利用杆子的太阳影子定位(球面天 文学与地球物理学)2016 年,系泊系统的设计(力平衡与力矩平衡) 。所以天知 道 2017 年 A 题会出什么样奇怪的问题。这本书有助于大家对于物理在工程上的 应用有一定的认识,以作为知识储备。 14. 《MATLAB 神经网络 43 个案例分析》 王小川等著 阅读人群:编程 最近几年比赛中,智能算法越来越多地出现在本科生的比赛中了,如果你想 14 在国赛或者美赛中使用一些新鲜的算法,那么还是学习这本书中的一些案例吧。 这本书的源程序全部都给你了,只需要对着程序一步步推敲,一定可以学到一些 知识(我们“好贷杯”模型的灵感出自这本书)。 15. 《机器学习》周志华著 阅读人群:建模 由于这个领域现在属于热门领域,因此数模的很大一部分未来的研究方向皆 在于此。我本人对于这个领域也处于学习当中。当然,你想要看懂这本书,还是 先学好概率论与数理统计,线性代数,和部分微积分的知识吧。 网站 1.数学中国论坛:www.madio.net 作为中国最大的数模论坛网站,你可以找到很多奇奇怪怪的数模资料,当然 我还是劝你先学好上面 10 本书之内的东西,因为其实一个人的精力并没有那 么多。 (实际上,我参加数学中国的比赛,很少用体力去上面下载什么资料) 。 2.LaTeX 中国区论坛:www.ctex.org 你想知道的 LaTeX 资料,上面都有。 3.中国知网:www.cnki.net 维普:www.cpvip.com 万方:www.wanfang.com.cn 这三家为中国主流的文献数据库,基本上大多数中文期刊可以找到。 4.由于 Google 学术在中国区无法使用,因此只能使用 Bing 学术搜索外文文献 了:http://cn.bing.com/academic 5.赛氪网:www.saikr.com 作为 APMCM 和 Mathorcup 的主办方,赛氪还是其他很多比赛的报名渠道。不 经意间往往可以发现更多适合自己的竞赛。 6.COMAP:www.comap.com 美赛官方网站,由于美赛是一个只发放电子证书的比赛,因此了解他家官网 还是很有必要的。 7.阿里巴巴天池大数据竞赛:http://tianchi.shuju.aliyun.com 作为数模后续竞赛,对于大三或者大四等高年级的同学,欢迎转战更加具有 实用性质的数据分析竞赛。 8.MATLAB 中文论坛:http://www.ilovematlab.cn 有啥问题就丢上去问就行了。 9.人大经济论坛:http://bbs.pinggu.org/ SAS,SPSS 等统计类的问题,在这个论坛上找出相关的目录,进去发问就好了。 这个论坛是我国经管类最好的论坛。
学习⼈⼯智能需要哪些必备的数学基础? 问题⼀:学习⼈⼯智能需要哪些必备的数学基础? 对于⼤多数的新⼿来说,如何⼊⼿⼈⼯智能其实都是⼀头雾⽔,⽐如到底需要哪些数学基础、是否要有⼯程经验、对于深度学习框架应该关 注什么等等? 因为现在AI⽕了,很多产品经理/程序员都想转⼊AI领域。 那么对于产品经理来说,针对于AI,我们需要了解些什么呢? AI PM很⼤程度上不同于互联⽹领域的产品经理,它涉及到更深的底层逻辑,对个⼈综合能⼒要求会更⾼⼀点,需要你有根据场景直接定位 落实相关举措的观察⼒。 这⾥写图⽚描述 这张图,⼤概可以诠释需要转AI的产品需要了解的基础/技术等。 数学:微积分 + 线性代数 + 概率统计【这些是⼤家在⼤学学的数学,线性代数和概率统计会更加重要点】 技术:这⾥分两块。 ⾸先,肯定是了解的越深越好。但是我知道⽬前市⾯上的⼤多数产品经理就是因为不会敲代码,所以才来从事这项"只画原型图"的⼯作… 如果不想过多深⼊技术这块,那么你需要了解技术本质,理解技术边界,能观察⾏业发展⽅向,并在这个层⾯形成产品决策⽅案。 如果你想⾛的更远,与团队更好的合作,那么你需要深⼊介⼊技术算法⽅向,能直接在这个层⾯给团队带来价值。在我看来,其实就算是半 个开发,只不过你可能不从事开发⼯作⽽已。 数学 + 技术,是你可以转向AI领域的最基础的技能。 但对于AI,我所理解的是,你还需要根据⾃⾝的能⼒ + 兴趣,去考量应该从事哪个领域。 AI很⼤,但肯定不是所有的领域都适合⾃⾝。 我觉得对于想转⾏的⼈来说,最重要的⼀点是需要了解⾃⼰想从事AI领域的运⾏规则,对⾏业明⽩的越深越好。 ⽐如,智能⾳箱,那么你就需要知道⾳箱这个产品整个产品的链条。 ⽐如,出⾏领域,那么你就需要了解具体的出⾏,从打车到上车,到下车⼀条线的具体场景链条。 问题⼆:学习⼈⼯智能需要哪些必备的数学基础? 以下转载⾃: ? 当下,⼈⼯智能成了新时代的必修课,其重要性已⽆需赘述,但作为⼀个跨学科产物,它包含的内容浩如烟海,各种复杂的模型和算法更是 让⼈望⽽⽣畏。对于⼤多数的新⼿来说,如何⼊⼿⼈⼯智能其实都是⼀头雾⽔,⽐如到底需要哪些数学基础、是否要有⼯程经验、对于深度 学习框架应该关注什么等等。 那么,学习⼈⼯智能该从哪⾥开始呢?⼈⼯智能的学习路径⼜是怎样的? 数学基础知识蕴含着处理智能问题的基本思想与⽅法,也是理解复杂算法的必备要素。今天的种种⼈⼯智能技术归根到底都建⽴在数学模型 之上,要了解⼈⼯智能,⾸先要掌握必备的数学基础知识,具体来说包括: 线性代数:如何将研究对象形式化? 概率论:如何描述统计规律? 数理统计:如何以⼩见⼤? 最优化理论: 如何找到最优解? 信息论:如何定量度量不确定性? 形式逻辑:如何实现抽象推理? 线性代数:如何将研究对象形式化? 事实上,线性代数不仅仅是⼈⼯智能的基础,更是现代数学和以现代数学作为主要分析⽅法的众多学科的基础。从量⼦⼒学到图像处理都离 不开向量和矩阵的使⽤。⽽在向量和矩阵背后,线性代数的核⼼意义在于提供了⼀种看待世界的抽象视⾓:万事万物都可以被抽象成某些特 征的组合,并在由预置规则定义的框架之下以静态和动态的⽅式加以观察。 着重于抽象概念的解释⽽⾮具体的数学公式来看,线性代数要点如下:线性代数的本质在于将具体事物抽象为数学对象,并描述其静态和动 态的特性;向量的实质是 n 维线性空间中的静⽌点;线性变换描述了向量或者作为参考系的坐标系的变化,可以⽤矩阵表⽰;矩阵的特征值 和特征向量描述了变化的速度与⽅向。 总之,线性代数之于⼈⼯智能如同加法之于⾼等数学,是⼀个基础的⼯具集。 概率论:如何描述统计规律? 除了线性代数之外,概率论也是⼈⼯智能研究中必备的数学基础。随着连接主义学派的兴起,概率统计已经取代了数理逻辑,成为⼈⼯智能 研究的主流⼯具。在数据爆炸式增长和计算⼒指数化增强的今天,概率论已经在机器学习中扮演了核⼼⾓⾊。 同线性代数⼀样,概率论也代表了⼀种看待世界的⽅式,其关注的焦点是⽆处不在的可能性。频率学派认为先验分布是固定的,模型参数要 靠最⼤似然估计计算;贝叶斯学派认为先验分布是随机的,模型参数要靠后验概率最⼤化计算;正态分布是最重要的⼀种随机变量的分布。 数理统计:如何以⼩见⼤? 在⼈⼯智能的研究中,数理统计同样不可或缺。基础的统计理论有助于对机器学习的算法和数据挖掘的结果做出解释,只有做出合理的解 读,数据的价值才能够体现。数理统计根据观察或实验得到的数据来研究随机现象,并对研究对象的客观规律做出合理的估计和判断。 虽然数理统计以概率论为理论基础,但两者之间存在⽅法上的本质区别。概率论作⽤的前提是随机变量的分布已知,根据已知的分布来分析 随机变量的特征与规律;数理统计的研究对象则是未知分布的随机变量,研究⽅法是对随机变量进⾏独
基于BERT构建新闻文本分类模型,并结合node.js + vue完成了一个可视化界面。 爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值