人工智能基础
一.选择题
1.[答案]: D
[解析]:人工智能三大学派是符号主义、连接主义和行为主义。
2.[答案]:B
[解析]:卷积神经网络的实际发明者是Kunihiko Fukushima,但 Yann LeCun 是第一个用反向传播训练卷积神经网络的人,即现在常用的卷积神经网络。
3.[答案]:C
[解析]:1986年,David Rumelhart、Gcoffrey Hinton、Ronald Williams、David Parker 和 Yann LeCun 提出多层网络中的反向传播算法。
4.[答案]: D
[解析]:深度学习三巨头”是Yoshua Bengio、Yann LeCun 和 Geoffrey Hinton,他们共同获得了2018年的图灵奖。
5.[答案]: D
[解析]: 在卷积神经网络中,权值共享是指对于网络中的某个卷积层,所有神经元都使用同一组卷积核进行卷积操作。 这样的设计减少了网络参数的数量,降低了模型的复杂度,并且增强了模型的学习能力。对于循环神经网络,如图,神经网络的不同时刻的计算权重W,U,V是一样的,这就意味着这些权重是每个时刻共享的。
二.判断题
1.[答案]错
[解析]: 虚拟现实是Virtual Reality,增强现实是 Augumented Reality,二者于不等价。
2.[答案]:错
[解析]:知识图谱是一种大规模的知识表示,基于大数据知识工程的知识图谱是符号主义学派的代表性成果。
3.[答案]:对
4.[答案]:错
[解]:辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;
确认是指将待识别人信息与存储库中特定单人信息进行比对,确定是否是同一个人,是一对一的问题。
三. 填空题
1.数据量爆发性增长、计算能力大幅提升、深度学习等算法发展、移动AI创新应用牵引
2.三维视觉
3.2017年
4.1956年
5.2022年
6.2021年
四.解答题
1.什么是人工智能?人工智能的意义与目标是什么?
人工智能(Artificial Intelligence,AI)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法和技术及应用系统的一门新的技术科学。
人工智能的概念很宽泛,根据人工智能达到的水平将其分为“弱人工智能”、“强人工智能"和“超人工智能三类。每种分类下人工智能要达到的目标不同,“弱人工智能下要达到的目标是根据人类设计的算法依托计算机进行基本逻辑推理从而解决特定问题。强人立智能”的目标是可以胜任人类所有的工作,能够进行思考和解决问题等。“超人工智能的目标是创造出一种在科学创新、通识和社交技能等方面都比人类大脑聪明很彩的智鲜。
2.驱动新一代人工智能发展与进步的因素有哪些?
数据量爆发性增长
物联网、移动物联网的快速发展极大地提高了数据的获取效率,每时每刻都可以捕捉、传输、存储和管理海量数据,数据规模呈现爆发式增长。计算能力大幅提升
- 随着GPU(Grmgphics Frocesng Uni)芯片普及,计算机的并行计算能力迈入新阶段。GPU的并行计算能力可同时处理人工智能算法所需要的大量数据,提升计算效率的同时随之带来了神经元网络连接的数目出现了巨大增长,加速了人工智能产业的发展历程。
- TPU(Tensorflow Processing Unit),TPU是为训练Tensorflow深度学习模型而推出的专用处理器,可以为神经网络处理大量乘法和加法运算,同时速度很快,能耗和物理空间占用也很小。
深度学习等算法发展
数据规模的增长和计算能力的提升给深度学习、强化学习(Reinforcement Learning,RL)和迁移学习(Transfer Learing, TL)的发展提供了必要条件,这些算法广泛应用于计算机视觉、语音识别、自然语言处理各个领域,使越来越多复杂和动态场景的需求得到了满足。移动AĮ创新应用举引
移动互联网与智能手机的结合为新一代人工智能插上了腾飞的翅膀,产生了全新的应用,如语音购物人脸支付、无人超市、自动驾驶等各类智能产品,提高了商业服务效率和质量,极大推进万人上智能产业的良性发展和惠民应用。
3.人中智能有哪三大流派?各种流派有哪些特点和代表性研究成果?
人工智能的三大学派分别是符号主义、连接主义和行为主义学派。
符号主义学派
符号主义研究者认为人工智能起源于数理逻辑,发展经历了启发式算法 → 专家系统 → 知识工程理论与技术,尤其是专家系统的成功开发与应用,为人工智能实现理论联系实际并走向工程应用具有特别重要的意义。基于**大数据知识工程的知识图谱(KnowledgeGraph)**是符号主义学派人工智能的代表性应用成果。连接主义学派
神经元之间错综复杂的连接被认为是人类智慧的来源,连接主义研究者 认为神经网络和神经网络之间的连接机制能产生智能。 2006年Hinton
首次提出深度信念网络,将深度学习推向学术界,并成为当前人工智能领域非常热门的研究方向,目前人工智能领域取得的大量应用和突破性进展都采用了深度神经网络的相关算法。行为主义学派
行为主义研究者认为人工智能源于控制论,控制论把神经系统的工作原理与信息理论、控制理论、逻辑和计算机联系起来。早期的研究工作重点是模拟人在控制过程中的智能行为和作用,如对自寻优、自适应和自学习等控制论系统的研究。当前最引人注目的研究成果是波士顿动力机器人。
4.新一代人工智能的关健技术有哪些?
新一代人工智能的关健技术主要包括:
机器学习与深度学习
- 机器学习是人工智能技术的核心, 基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或者无压观测的费据进行预测。
- 深度学习是机器学习的一个子集,利用多层神经网络从大量数据中进行学习。深度学习在搜索技术、数据挖掘、机器翻译、自然语言理解、语音识别、推存和个性化技术及其他许多相关领域都取得了很多成果,使人工智能相关技术取得了巨大进步。
计算机视觉
计算机视觉是使用计算机模仿人类视觉系统的科学,让算机拥有人类提取、处理、理解和分析图像及图像序列的能力。自动驾驶、机器人、图片理解、视频理解、智慧医疗等领域均需通过计算机视觉技术从视觉信号中提取并处理信息。自然语言处理
自然语言处理是计算机科学领域与人工智能领域中个重要方向,它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是一门融语言学、计算机科学和数学于一体的科学,主要包括机器翻译、语义理解和问答系统等。知识图谱
知识图谱本质上是结构化的语义知识库:是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是实体一关系一实体<