文章目录
零. 公式
一阶线性微分方程
常系数齐次线性微分方程:通解
e的指数系数和三角函数系数组成共轭复根非齐次微分方程:特解
- 右式形式与特征根相匹配,则有一个多的x次方,
- m最高次,比如:f=sinx可设解为(asinx+bcosx)。最高次是常数,所以cosx也在形式中。
一. 选择
1. 根据根推导原方程
- 高阶线性方程
根据根的情况得出特征方程,进而得出微分方程。
2. 用解+右推解的结构
- 二阶:齐次通解推断非齐次通解
a. 由通解形式,得特征方程,得到齐次通解
b. 由非齐次右式,得特解形式,带入得特解
c. 现在得非齐次通解形式,带入条件得通解。
3. 不用公式:消除常数求原方程
- 一阶:由通解推断非齐次,不能用公式,需变换求导
4. 不用公式:解带入求
- 一阶:由解的式子推解,不能用公式。