【高等数学-第六章】【强化之综合习题】微分方程及其应用

零. 公式

  1. 一阶线性微分方程
    在这里插入图片描述

  2. 常系数齐次线性微分方程:通解
    在这里插入图片描述在这里插入图片描述
    e的指数系数和三角函数系数组成共轭复根

  3. 非齐次微分方程:特解
    在这里插入图片描述

  • 右式形式与特征根相匹配,则有一个多的x次方,
  • m最高次,比如:f=sinx可设解为(asinx+bcosx)。最高次是常数,所以cosx也在形式中。

一. 选择

在这里插入图片描述

1. 根据根推导原方程

  1. 高阶线性方程
    根据根的情况得出特征方程,进而得出微分方程。
    在这里插入图片描述

2. 用解+右推解的结构

  1. 二阶:齐次通解推断非齐次通解
    a. 由通解形式,得特征方程,得到齐次通解
    b. 由非齐次右式,得特解形式,带入得特解
    c. 现在得非齐次通解形式,带入条件得通解。
    在这里插入图片描述

3. 不用公式:消除常数求原方程

  1. 一阶:由通解推断非齐次,不能用公式,需变换求导
    在这里插入图片描述

4. 不用公式:解带入求

  1. 一阶:由解的式子推解,不能用公式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

roman_日积跬步-终至千里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值