文章目录 一. 基本内容与重要结论 1. 基础知识 2. 重要定理 2.1. 线性表示与秩 2.2. 整体组与部分组,延伸组与缩短组 一. 典型例题 1. 线性相关性 题型一:利用向量组性质判断相关性 题型二:利用定义(进行线性表示)判断线性相关性 题型三:充要证明 题型四:右乘矩阵判断相关性 2. 线性表出 题型一:判断线性表出与表示式 真题难度1 利用定理 3. 向量组的秩 题型一:利用秩来求极大线性无关组,与向量表示方法(真题中等难度) 4. 矩阵秩的证明 一. 基本内容与重要结论 1. 基础知识 内积=0则正交,和自己的内积=0,则向量=0。 线性相关: 向量组之间的相互表示 极大无关向量组:与秩。 秩:极大无关向量组中所含向量的个数。 2. 重要定理 2.1. 线性表示与秩 s=系数矩阵的秩=增广矩阵的秩,则表示唯一 A能够表示B,则A的秩大 等价则秩相等 2.2. 整体组与部分组,延伸组与缩短组 部分相关,整体相关 整体无关,部分无关 组无关,延伸无关(延伸不改变组的秩) 延伸相关,缩短相关(缩短可能减小组的秩,更小的秩肯定