【高等数学】【第四章强化】多元函数微分学

一. 内容精讲

【高等数学】【第四章】【知识点与题型总结】:多元函数微分学

 

二. 常见题型

1. 重积分、连续、偏导数、全微分(概念、理论)

1.1 讨论连续性、可导性、可微性

题型一:利用定义判断:连续、偏导、可微

在这里插入图片描述

  1. 连续:夹逼准则
  2. 偏导:定义:
  3. 可微:定义:找一个反例

在这里插入图片描述

在这里插入图片描述 在这里插入图片描述

 

在这里插入图片描述

D

 

可微定义法与举例法

在这里插入图片描述

  1. 连续和偏导都不是可微的充分条件 A:是连续、B是偏导
  2. C:变换成全微分定义:

在这里插入图片描述
如何证明偏导连续:此题无法证明。

更直接的方法:

是分母的高阶无穷小,所以可微
在这里插入图片描述

 

在这里插入图片描述

在这里插入图片描述

 

在这里插入图片描述

凑微分形式:
在这里插入图片描述

 

求△极限的技巧

在这里插入图片描述

  1. 利用偏导定义:
  2. 微分定义+技巧
    在这里插入图片描述

 

2. 偏导与全微分计算

2.1. 题型一:求一点处的偏导数与全微分

分段函数要用定义求偏导

在这里插入图片描述

在这里插入图片描述

 

具体函数求偏导的技巧

:一阶偏导:先带后求、高阶偏导:先求后代再求

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

roman_日积跬步-终至千里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值