一. 内容精讲
二. 常见题型
1. 重积分、连续、偏导数、全微分(概念、理论)
1.1 讨论连续性、可导性、可微性
题型一:利用定义判断:连续、偏导、可微
- 连续:夹逼准则
- 偏导:定义:
- 可微:定义:找一个反例
![]()
D
可微定义法与举例法
- 连续和偏导都不是可微的充分条件 A:是连续、B是偏导
- C:变换成全微分定义:
如何证明偏导连续:此题无法证明。
更直接的方法:
是分母的高阶无穷小,所以可微
凑微分形式:
求△极限的技巧
- 利用偏导定义:
- 微分定义+技巧
2. 偏导与全微分计算
2.1. 题型一:求一点处的偏导数与全微分
分段函数要用定义求偏导
具体函数求偏导的技巧
:一阶偏导:先带后求、高阶偏导:先求后代再求