矩形窗函数rect()和辛格函数sinc()是一组傅里叶变换对相关公式证明

本文解析了rect()函数和sinc()函数作为一组傅里叶变换对的数学原理,包括rect()函数的傅氏变换和sinc()函数的逆傅氏变换的详细推导过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.rect()的傅氏变换

 

rect()函数和sinc()函数是一组傅里叶变换对,rect()函数及其傅氏变换频谱图(sinc()函数)的图像可如下所示:

函数表达式为:

求Fourier Transform:

如果以角频率w为自变量,则结果变为Tsinc(wT/2pi)。可以看到求解矩形窗函数的傅氏变换没有太过复杂。

2.sinc()的逆傅氏变换

但是如果反过来求sinc函数的傅氏变换该如何下手,搜遍全网几乎找不到详细的推导步骤,其实我们可以求sinc()函数的逆傅氏变换,只要能求出来是rect(),则能证明它们是一组傅氏变换对。今天在这里给大家分享一种推导方法,过程稍微有些复杂。首先先看两个积分:

在有了这两个公式做基础的情况下,我们就可以开始求sinc函数的逆傅氏变换: 

这里用到四条性质:

  1. 偶函数在对称区间上的积分等于它在整个区间的一半上的积分的2倍;
  2. 奇函数在对称区间上的积分等于零;
  3. 一个偶函数与一个奇函数相乘所得的积为奇函数;
  4. 两个偶函数相乘所得的积为偶函数。

上式中的被积函数的分母1/f可替换为:


*如果上述内容有误,请大家留言指正,我会及时修改* 

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一枚雷达信号处理领域的小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值