在线背包问题与低复杂度调度算法解析
1. 在线背包问题的复杂度分析
在线背包问题是一个经典的组合优化问题,在资源分配等领域有广泛应用。我们将从建议复杂度、随机位复杂度以及资源增强等方面对其进行深入探讨。
1.1 建议复杂度
在算法中,整数 $k$ 处于 $0$ 到 $\lceil1/\delta\rceil$ 的范围,它能够利用 $\lceil\log(\lceil1/\delta\rceil + 1)\rceil$ 位进行编码。该算法所使用的建议位总数为:
$1 + i \cdot \lceil\log n\rceil + 2 \cdot \left(\log\left(\left\lceil\frac{1}{\delta}\right\rceil + 1\right)\right) + 2 \cdot \lceil\log\lceil\log n\rceil\rceil$
1.2 随机位复杂度
- 算法 B :假定采用与定理 4 相同的算法,但对建议位进行猜测,此算法 B 有 $1/2$ 的概率达到 2 - 竞争性,同样有 $1/2$ 的概率不具备竞争性,期望情况下为 4 - 竞争性。通过以下定理可知该界限是紧密的。
- 定理 7 :简单背包问题的随机在线算法 B 在期望情况下无法优于 4 - 竞争性。
- 证明 :设 $\varepsilon < 1/6$,考虑三个大小分别为 $1/2 - \varepsilon$、$3\varepsil
超级会员免费看
订阅专栏 解锁全文
480

被折叠的 条评论
为什么被折叠?



