10、在线背包问题与低复杂度调度算法解析

在线背包问题与低复杂度调度算法解析

1. 在线背包问题的复杂度分析

在线背包问题是一个经典的组合优化问题,在资源分配等领域有广泛应用。我们将从建议复杂度、随机位复杂度以及资源增强等方面对其进行深入探讨。

1.1 建议复杂度

在算法中,整数 $k$ 处于 $0$ 到 $\lceil1/\delta\rceil$ 的范围,它能够利用 $\lceil\log(\lceil1/\delta\rceil + 1)\rceil$ 位进行编码。该算法所使用的建议位总数为:
$1 + i \cdot \lceil\log n\rceil + 2 \cdot \left(\log\left(\left\lceil\frac{1}{\delta}\right\rceil + 1\right)\right) + 2 \cdot \lceil\log\lceil\log n\rceil\rceil$

1.2 随机位复杂度
  • 算法 B :假定采用与定理 4 相同的算法,但对建议位进行猜测,此算法 B 有 $1/2$ 的概率达到 2 - 竞争性,同样有 $1/2$ 的概率不具备竞争性,期望情况下为 4 - 竞争性。通过以下定理可知该界限是紧密的。
    • 定理 7 :简单背包问题的随机在线算法 B 在期望情况下无法优于 4 - 竞争性。
    • 证明 :设 $\varepsilon < 1/6$,考虑三个大小分别为 $1/2 - \varepsilon$、$3\varepsil
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值