首先阐述一下逆序对的概念。假设有一个数组为Array[0..n] 其中有元素a[i],a[j].如果 当i<j时,a[i]>a[j],那么我们就称(a[i],a[j])为一个逆序对。
那么统计一个数组中的逆序对,有什么作用呢。逆序对可以反映插入排序的效率问题,如果逆序对数量多,那么插入排序的效率就低,反之亦然。
那么如何快速的找到逆序对的数量,同时又能够对数组进行排序,并且使得复杂度为O(n*logn)呢?这就可能是一个小问题
看到复杂度为n*logn 有一种亲切感,应为我们可以知道归并排序的时间复杂度为O(n*logn)。 同时归并排序是通过递归的方法建立递归树,利用最小的两个元素进行对比然后逐层向上进行递归,然后对比两个已经排好序的数组,得到最终完整的排好序的数组。
归并排序分为了3步骤;
第一步 拆分
第二步进行 计算两个同样类型但是规模较小的数组
第三步 合并两个已排好序的数组
因此从整个数组拆分过程中,我们将它不断进行拆分,而拆分得到的两个数组,又是和原数组目的和形式相同的(即都是要排序,同时如果不为最小还要进行以上3步)
这样可以想到递归解决问题,每一层进行相同的3步,知道不能进行位置。那么这个不能进行的判断显得格外重要。
那么加入了逆序对后,如何考虑呢,实际上很简单。以为从最下面的含两个元素的数组,到上层含多个元素的数组都有前后之分,这正好与逆序对性质相符,只要我们找出前面那一个数组中假设L[i] 大于 后面一个数组中某个元素R[j] 然后就知道前面那个数组在该元素L[i]之后的元素都应该是大于R[j]的。因为在归并过程我们也进行了排序。
大概思路就是这样,以下是代码。
#include "stdafx.h"
#include "stdio.h"
#include "stdlib.h"
#define Infinite_num 1000
int L[100];
int R[100];
int merge_sort(int Array[],int p,int q,int r)
{
int n1 = q-p+1;
int n2 = r-q;
for(int i=0;i<n1;i++)
{
L[i] = Array[p+i];
}
L[n1] = Infinite_num;
for(i=0;i<n2;i++)
{
R[i] = Array[q+i+1];
}
R[n2] = Infinite_num;
int inversions = 0;
int count = false;
int j=0;
i=0;
for(int k=p;k<=r;k++)
{
if(count==false &&(L[i]>R[j])&&(R[i]!=Infinite_num))
{
inversions = inversions+n1-i;
count = true;
}
if(L[i]<=R[j])
{
Array[k] = L[i];
i++;
}
else
{
Array[k] = R[j];
j++;
count = false;
}
}
return inversions;
}
int merge_inverse(int Array[],int p,int r)
{
int inversions = 0;
int q = -1;
if(p < r)
{
q = (p+r)/2;
inversions = inversions+merge_inverse(Array,p,q);
inversions = inversions+merge_inverse(Array,q+1,r);
inversions = inversions+merge_sort(Array,p,q,r);
}
return inversions;
}
int main(int argc, char* argv[])
{
int Array[] = {1,3,7,8,2,4,6,5};
int inverse_times = 0;
inverse_times = merge_inverse(Array,0,7);
printf("%d",inverse_times);
return 0;
}