冒泡排序最差交换次数

本文探讨了冒泡排序算法在对序列5、4、3、2、1进行升序排列时所需的交换次数。通过分析得出,在最坏的情况下,交换次数为序列长度乘以(序列长度 - 1)的一半。并提供了相应的代码实现和排序结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:

使用冒泡排序对序列进行升序排列,每执行一交交换操作将减少1个逆序列,问序列5、4、3、2、1需要执行多省交换操作,都能完成冒泡排序。

分析:

最差序列冒泡排序交换次数:n-1+n-2+……+2+1 [n*(n-1)/2]

代码:

#include <iostream>
const int MAXN=100001;
using namespace std;
int main(){
   </
### Python 实现冒泡排序时的比较次数分析 冒泡排序是一种经典的排序算法,其核心思想是比较相邻的两个元素并根据大小关系进行交换。在每次遍历中,最大的未排序元素会被移动到数组的最后位置。 #### 比较次数计算 假设待排序列表长度为 \( n \),则冒泡排序的总比较次数可以分为最坏情况、最好情况以及平均情况来讨论: 1. **最坏情况下** 当输入序列完全逆序时,每一趟都需要完成最大可能的比较次数。具体来说,在第 \( i \) 趟排序中,需要进行 \( (n-i-1) \) 次比较。因此,总共的比较次数可以通过求和公式得出: \[ T_{\text{worst}} = (n-1) + (n-2) + ... + 1 = \frac{n(n-1)}{2} \] 这表示当数据完全无序时,冒泡排序的时间复杂度为 \( O(n^2) \)[^4]。 2. **最佳情况下** 如果初始序列已经有序,则只需要通过一轮扫描即可确认无需任何交换动作发生。此时仅需执行一次完整的外层循环而不需要额外内部迭代,故总的比较次数固定为 \( n-1 \)。 3. **平均情况下** 对于随机分布的数据集而言,实际发生的比较次数介于上述两种极端情形之间。通常认为平均比较次数接近于最差情况的一半左右,即约为 \( \frac{n(n-1)}{4} \)。 以下是基于以上理论的一个简单实现示例: ```python def bubble_sort_with_count(nums): count_compare = 0 # 初始化比较计数器 n = len(nums) for i in range(n - 1): # 控制轮次 swapped = False for j in range(n - 1 - i): # 单轮内的逐对比较 count_compare += 1 # 记录每一次比较 if nums[j] > nums[j + 1]: nums[j], nums[j + 1] = nums[j + 1], nums[j] swapped = True if not swapped: # 若某轮没有发生交换可提前结束 break return nums, count_compare # 返回最终结果及累计比较次数 ``` 此函数不仅完成了基本功能还统计了整个过程中产生的有效对比数量以便进一步验证前述结论[^1][^3]. #### 总结 综上所述,对于长度为\( n\) 的数组采用标准版冒泡排序法处理时, - 最多可能发生约\( \frac{n(n-1)}{2}\) 次键值间的两两对照; - 至少只需做\( n-1\)回这样的检测便能得知原始资料排列状态是否满足升序需求从而决定后续步骤走向何方[^2].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值