目标检测,目标识别的SAR数据集构建和标注

目标检测,目标识别的SAR数据集构建和标注

本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权

欢迎关注我的博客:http://blog.csdn.net/hit2015spring
推荐一个美丽而有情怀的书店:晨凫追风

深度学习火热了很多年了,人们利用在自然光照下获取的图片数据进行目标检测和目标的识别也已经到达了一个全新的水平,但是在雷达遥感图片的识别和检测的进展还远远没有达到当前自然光照下的图片水平。深究其原因:
1、自然光下的图片数据量是巨大的,相对来说获取成本是低廉的
2、在构建数据集做研究的角度来说,一般的单位无法承担的数据集构建所需的花销
3、雷达遥感图片的研究关系到较大较敏感的军事任务,所以没有大量的数据集来做研究
4、雷达遥感图片的研究无法直接产生经济效益
所以在这一方面的研究就显得更加的少。

目前在雷达数据上面的研究,主要就是基于美国空军公开的一套MSTAR数据集,这个数据集的介绍在我的上一篇博客里面就有介绍了,详见:MSTAR雷达数据集总结

在目前对SAR图片的研究中主要是对敏感军事目标的检测和识别,图片处理的算法主要是传统的算法,主要包括了一些图像处理的算法,还有深度学习的算法,主要是基于nn的方式,在nn的方式中一个最大的问题就是对数据的获取,由于在目前公开的雷达数据中只有MSTAR数据集是用于研究的,在这里我们利用合成的方式对数据进行解析,再二次获取到包含有目标的场景图片,最后的图片标注用于人工标注后做训练,就可以获取实验所需的数据集。

构建的数据集格式,1:带有目标场景的大面幅的SAR图片
2:对应于SAR图片的xml标注文件

训练的网络例子主要是:rcnn ssd faster rcnn

交流企鹅号:2928088671,如需要数据,请备注需要数据

最后提示一下大家:挂在网上的公开数据是不全的(包括我提供作为例子的),反正被坑惨了,不然浪费做科研的宝贵时间!

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页