很早之前就买了《数学之美》这本书,当时到书店去瞎逛,随便翻翻,感觉还不错,就买了,之后也没怎么细看。上学期上完数据挖掘和自然语言处理这两门课,感觉听得晕乎乎的,没搞清楚里面的各种数学公式,只是很是纳闷机器翻译、分词、搜索等等这些高深的技术为啥都能用一些统计学、矩阵这些看似毫不沾边的数学知识把他们很好的解决。学的时候也只是机械的记住一些公式算法,知其然不知其所以然。开学以来,心里比较浮躁,想找本书读一读,好静下心做些事。之前也买了不少书,大多以某一方向的技术为主,比较枯燥,适合当字典用。正好这本书还不错,花了一些零散时间好好读了一下这本书,总体感觉是:它不是一本详细的技术介绍数据,但它却是一本很好的关于科学关于思维方法的科普书籍。借用书中的一句话来概括一下这本书中心思想:从希腊哲学到现代物理学的整个科学史中,不断有人试图把表面极为复杂的自然现象归结为几个简单的基本的概念和关系,这就是整个自然哲学的基本原理。
众所周知,在当今信息科学领域自然语言处理、机器翻译、搜索是非常热门而且比较难的方向。我们绝大多数人都领略到了技术神奇的一面,而对技术背后原理却相当陌生。大多数书籍的介绍或则课程的学习也只是介绍怎么做而不介绍为什么这么做,看完这些我们也只惊叹于技术的奇妙,而未能深究其背后的数学原理,学的时候也感觉很迷茫。学完之后原先高深的东西照样还是那么高深,没能对知识有一种透彻的理解。而《数学之美》这本书从文字的产生、信息的度量讲到语言处理、机器翻译、搜索这些现代IT技术。每个都通过简单的背景介绍到引入数学知识加以完善,使人感觉一切都是那么自然,合符我们思维的习惯,看完之后我们就会觉得这事就应该这么做,也不禁惊叹于数学的奇妙,也不再纠结于学线性代数、概率论、数值分析等等这些数学课程的用处。一些日常生活中看似简单的概念,可当我们认真去思考的时候会发现其实不是那么简单,比如信息,什么是信息,拿什么去度量等。这些问题当我们用技术的手段去解决的时候,需要有一个定量的分析,而这却需要一个好的数学模型去描述。现实世界中的好多东西我们都可以从数学中找到相应的模型来刻画。纷繁复杂的技术背后的数学原理却那么简单,形式上也是那么的简约。看完之后,细细回想当时学自然语言处理的时候所困惑的问题,突然有了一种豁然开朗的感觉。如我当时不甚明白搜索为什么要用矩阵与余弦定理去处理、分词的一些概率公式等,看了相应的章节之后,对其中的一些术语、度量公式有了一个清晰的认识,当然对这些技术背后的基本原理也搞清楚了,知其然也知其所以然。 记得书后面有这样一段话:“世界万般表象的背后都有规律,科学研究的目的在于找到这些规律并能够举一反三的应用这些规律。对于自然科学而言,数学是描述这些规律的最好工具。做事情的方法有好坏、对错之分,而好的方法背后都有充分的理论依据,都有正确的方法论。 ”熟话说外行看表现,内行看门道,对信息科学而言我们惊叹于技术本身的同时,更应该去思索掌握背后的数学原理。纵观全书,大多数复杂技术背后的数学模型却是那么简洁,一个好的数学模型能解决一系列问题,甚至是看似毫不相关的领域,比如当时的自然语言处理中的统计语言模型。数学对于我们来说是晦涩抽象的,产生这一现象的本质原因在于与应用产生了距离,所以我们就不要去着急否定某一知识的有用性,绝大多数情况是我们没有达到那种高度,学习的时候也不要有太大的功利心,正如书中所说,有时看似最远的路其实是最近的道路…… |
《数学之美》--读书感想
最新推荐文章于 2021-06-24 22:33:27 发布