mask rcnn bencmark pytorch自定义数据集的方法

前言

参考代码: mask rcnn benchmark

数据集来源:津南数字制造算法挑战赛【赛场二】初赛

这个代码不能直接运行,仅仅提供参考,本人也仅仅是接触检测不到一个礼拜,如果有什么疑问欢迎在讨论区交流。

1、数据解读

数据集训练train_no_poly.json的格式,类coco风格

import json
with open('../train_no_poly.json', 'r') as f:
    data = json.load(f)

print(data.keys())
>>> dict_keys(['info', 'licenses', 'categories', 'images', 'annotations'])

print(data['info'])
>>> {
   'description': 'XRAY Instance Dataset ', 'url': '', 'version': '0.2.0', 'year': 2019, 'contributor': 'qianxiao', 'date_created': '2019-03-04 08:52:50.852455'}

print(data['licenses'])
>>> [{
   'id': 1, 'name': 'Attribution-NonCommercial-ShareAlike License', 'url': ''}]

print(data['categories'])
>>> [{
   'id': 1, 'name': '铁壳打火机', 'supercategory': 'restricted_obj'}, {
   'id': 2, 'name': '黑钉打火机', 'supercategory': 'restricted_obj'}, {
   'id': 3, 'name': '刀具', 'supercategory': 'restricted_obj'}, {
   'id': 4, 'name': 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值