题目描述
国家一级爬山运动员h10今天获得了一张有着密密麻麻标记的地图,在好奇心的驱使下,他又踏上了去爬山的路。
对于爬山,h10有一个原则,那就是不走回头路,于是他把地图上的所有边都标记成了有向边。他决定从点S出发,每到达一个新的节点他就可以获得一定的成就值。同时h10又是一个很珍惜时间的运动员,他不希望这次爬山的成就值白白浪费,所以最后他一定要在一个存档点停下,保存自己的成就值。
请你计算出在此次爬山运动中h10能够得到的最大成就值。保证h10能走到存档点。
输入
第一行两个整数 N,M,表示点数和边数。
接下来 M 行,每行两个整数 u,v,表示u到v有一条有向边(没有自环)。
第 M+2 行 N 个正整数,表示每个点的成就值。
接下来一行两个整数 S,p,表示出发点和存档点个数。
下面一行 p 个整数,表示存档点。
输出
一个正整数,表示最大成就值。
样例输入
5 7
5 1
3 1
2 5
3 5
4 3
4 2
4 5
7 6 3 2 2
4 3
1 5 2
样例输出
17
数据范围
对于 30% 的数据, N,M≤1000,并且地图为有向无环图。
对于 100% 的数据, N,M≤500000。(数据有梯度,注意答案的大小)
解法
这道题模型很明显,考虑图是一个DAG(有向无环图)的时候,拓扑排序上动态规划即可。
对于有环的情况,发现一个环的贡献是这个环上所有点的权值之和。
所以使用强连通分量把每个环都缩成一个点。
再使用拓扑排序上动态规划即可。
※手写栈需要
代码
#include<iostream>
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
#define ll long long
#define ln(x,y) ll(log(x)/log(y))
#define sqr(x) ((x)*(x))
using namespace std;
const char* fin="aP2.in";
const char* fout="aP2.out";
const ll inf=0x7fffffff;
const ll maxn=500007,maxm=maxn*2;
ll n,m,i,j,k,st,En,tot,num;
ll a[maxn],fi[maxn],ne[maxm],la[maxm];
ll stack[maxn],dfn[maxn],low[maxn],fa[maxn];
ll ru[maxn];
ll b[maxn];
ll f[maxn],ans;
ll cz[maxn];
bool bz[maxn],en[maxn];
ll read(){
ll x=0;
char ch=getchar();
while (ch<'0' || ch>'9') ch=getchar();
while (ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return x;
}
void add_line(ll a,ll b){
tot++;
ne[tot]=fi[a];
la[tot]=b;
fi[a]=tot;
}
struct handstack{
ll i,j,k,v;
}hs[maxn];
int hst=0;
void handdfs(ll v){
hs[++hst].v=v;
hs[hst].i=0;
while (hst){
if (hs[hst].i){
if (hs[hst].k){
if (!dfn[la[hs[hst].k]]) {
hs[hst+1].v=la[hs[hst].k];
hs[hst+1].i=0;
hst++;
continue;
}else if (bz[la[hs[hst].k]]) low[hs[hst].v]=min(low[la[hs[hst].k]],low[hs[hst].v]);
hs[hst].k=ne[hs[hst].k];
}else{
if (low[hs[hst].v]==dfn[hs[hst].v]){
while (stack[0]>hs[hst].j) {
for (hs[hst].k=fi[stack[stack[0]]];hs[hst].k;hs[hst].k=ne[hs[hst].k]) add_line(hs[hst].v,la[hs[hst].k]);
fa[stack[stack[0]]]=hs[hst].v;
a[fa[stack[stack[0]]]]+=a[stack[stack[0]]];
bz[stack[stack[0]--]]=false;
}
fa[stack[stack[0]]]=hs[hst].v;
bz[stack[stack[0]--]]=false;
}
hst--;
}
}else{
hs[hst].i=1;
dfn[hs[hst].v]=low[hs[hst].v]=++num;
bz[stack[hs[hst].j=++stack[0]]=hs[hst].v]=true;
hs[hst].k=fi[hs[hst].v];
}
}
}
void dfs(ll v){
ll i,j,k;
dfn[v]=low[v]=++num;
bz[stack[j=++stack[0]]=v]=true;
for (k=fi[v];k;k=ne[k])
if (!dfn[la[k]]) {
dfs(la[k]);
low[v]=min(low[la[k]],low[v]);
}else if (bz[la[k]]) low[v]=min(dfn[la[k]],low[v]);
if (low[v]==dfn[v]){
while (stack[0]>j) {
for (k=fi[stack[stack[0]]];k;k=ne[k]) add_line(v,la[k]);
fa[stack[stack[0]]]=v;
a[fa[stack[stack[0]]]]+=a[stack[stack[0]]];
bz[stack[stack[0]--]]=false;
}
fa[stack[stack[0]]]=v;
bz[stack[stack[0]--]]=false;
}
}
void topsort(){
ll i,j,k,head=0,tail=0;
for (i=1;i<=n;i++){
if (fa[i] && i==fa[i]) for (k=fi[i];k;k=ne[k]){
if (/*cz[fa[la[k]]]<i && */fa[la[k]]!=i) ru[fa[la[k]]]++/*,cz[fa[la[k]]]=i*/;
}
}
for (i=1;i<=n;i++) if (!ru[i] && fa[i]==i) {
b[++tail]=i;
f[i]=a[i];
break;
}
while (head++<tail){
if (en[b[head]]) ans=max(ans,f[b[head]]);
for (k=fi[b[head]];k;k=ne[k]) if (fa[la[k]]!=b[head]){
i=fa[la[k]];
f[i]=max(f[i],f[b[head]]+a[i]);
if (--ru[i]==0) b[++tail]=i;
}
}
}
int main(){
n=read();m=read();
for (i=1;i<=m;i++){
j=read();k=read();
add_line(j,k);
}
for (i=1;i<=n;i++) a[i]=read();
st=read();En=read();
handdfs(st);
for (i=1;i<=En;i++) j=read(),en[fa[j]]=true;
topsort();
printf("%lld",ans);
return 0;
}