【JZOJ1922】【Usaco 2005 NOV Gold】小行星群

题目描述

Bessie想驾驶她的飞船穿过危险的小行星群,小行星群是一个N×N的网格(1 <= N <= 500),在网格内有K个小行星(1 <= K <= 10,000)。
幸运地是Bessie有一个很强大的武器,一次可以消除所有在一行或一列中的小行星,这种武器很贵,所以她希望尽量地少用。给出所有的小行星的位置,算出Bessie最少需要多少次射击就能消除所有的小行星。

输入

第1行:两个整数N和K,用一个空格隔开。
第2行至K+1行:每一行有两个空格隔开的整数R和C(1 <= R, C <= N),分别表示小行星所在的行和列。

输出

1行:一个整数表示Bessie需要的最少射击次数,可以消除所有的小行星。

样例输入

3 4
1 1
1 3
2 2
3 2

样例输出

2

样例解释

【输入解释】:
下面的图表示上面的数据,”X”表示一个小行星,”.”表示为空:
X.X
.X.
.X.
【输出解释】:
Bessie在第1行射击消除在(1,1)和(1,3)上的小行星,在第2列射击消除在(2,2)和(3,2)上的小行星。

解法

网络流建模:
源点向所有行连一条容量为1的边,所有列向汇点连一条容量为1的边;
对于一个陨石(x,y),把第x行向第y列连一条容量正无穷的边。
最小割即可。


检验:
可以花费1费用把任意一行或任意一列的与源点或汇点的边删掉,那么就可以使连接这行或这列的陨石的正无穷这条边无效化。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define ll long long
#define sqr(x) ((x)*(x))
#define ln(x,y) int(log(x)/log(y))
#define row(x) (x+1)
#define col(x) (x+n+1)
#define po(x) (2*n+1+x)
using namespace std;
const char* fin="ex1922.in";
const char* fout="ex1922.out";
const int inf=0x7fffffff;
const int maxn=107*2,maxm=10007,maxtot=20007,maxr=maxtot*5;
int n,m,i,j,k,ans;
int fi[maxtot],la[maxr],ne[maxr],va[maxr];
int tot=1,num,bz[maxtot],card[maxtot];
int add_line(int a,int b,int c){
    tot++;
    ne[tot]=fi[a];
    la[tot]=b;
    va[tot]=c;
    fi[a]=tot;
}
int add(int v,int u,int r){
    add_line(v,u,r);
    add_line(u,v,0);
}
int gap(int v,int flow){
    int i,use=0,k;
    if (v==num) return flow;
    for (k=fi[v];k;k=ne[k])
        if (va[k] && bz[v]==bz[la[k]]+1){
            i=gap(la[k],min(va[k],flow-use));
            use+=i;
            va[k]-=i;
            va[k^1]+=i;
            if (flow==use || bz[1]==num) return use;
        }
    if (!--card[bz[v]]) bz[v]=num;
    card[++bz[v]]++;
    return use;
}
int main(){
    scanf("%d%d",&n,&m);
    num=n*2+2;
    for (i=1;i<=m;i++){
        scanf("%d%d",&j,&k);
        add(row(j),col(k),inf);
    }
    for (i=1;i<=n;i++) add(1,row(i),1),add(col(i),num,1);
    card[0]=num;
    while (bz[1]<num) ans+=gap(1,inf);
    printf("%d",ans);
    return 0;
}

启发

第一次网络流建模;
网络流中的任何一条边都可以看做使用容量费用来切掉,那么最小割可以灵活运用。

使用的SAP所用的优化

1.GAP优化,当任意距离的数量为0时,整个增广就不必继续增广。
2.当前弧优化,把当前所有的可增广的都增广。
3.使用异或优化编程复杂度,tot初始设为1,则k的反向弧就可以用k^1表示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值