[Usaco2005 Nov Gold]Grazing on the Run奶牛吃草-Dp 移动类

解决Joseph吃草问题,通过寻找最优路径使总腐败值最小化。利用动态规划思想,给出一种有效的解决方案。

如有错误,请留言提醒,不要坑到小朋友

Description

John养了一只叫Joseph的奶牛。一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草。我们可以认为草地是一个数轴上的一些点。Joseph看到这些草非常兴奋,它想把它们全部吃光。于是它开始左右行走,吃草。John和Joseph开始的时候站在p位置。Joseph的移动速度是一个单位时间一个单位距离。不幸的是,草如果长时间不吃,就会腐败。我们定义一堆草的腐败值是从Joseph开始吃草到吃到这堆草的总时间。Joseph可不想吃太腐败的草,它请John帮它安排一个路线,使得它吃完所有的草后,总腐败值最小。John的数学很烂,她不知道该怎样做,你能帮她么? 

Input

输入(ontherun.in) 
输入文件第一行有两个整数,N(N<=3000)和p,分别代表草的堆数和起始位置。下面N行,每行一个整数ai,代表N堆草的位置。(1 <= ai , p <= 1000000) 

Output

输出一个整数,最小总腐败值。结果保证在2^31-1内。 

Sample Input

4 10
1
9
11
19

Sample Output

44

Hint


提示 
0时刻,在位置10。 
移动到9,1时刻到达,吃草。 
移动到11,3时刻到达,吃草。 
移动到19,11时刻到达,吃草。 
移动到1,29时刻到达,吃草。 
总腐败值1 + 3 + 11 + 29 = 44最优。 
数据规模 
对于30%的数据,N <= 10。 
对于60%的数据,N <= 300。 
对于100%的数据,N <= 3000。 

设f[i][j][0],f[i][j][1]分别代表奶牛吃完了i到j的草,停留在左端,停留在右端

#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#include<climits>
#include<cctype>
#include<string>
#define maxn 3100
#define min(a,b) ((a)>(b)?(b):(a))
using namespace std;
int f[maxn][maxn][2];
int a[maxn],n,x;
int main(){
	scanf("%d%d",&n,&x);
	for(int i=1;i<=n;i++)
		scanf("%d",a+i);
	sort(a+1,a+n+1);
	for(int i=1;i<=n;i++)f[i][i][0]=f[i][i][1]=abs(a[i]-x)*n;
	for(int len=2;len<=n;len++)
		for(int i=1;i<=n-len+1;i++){
			int j=i+len-1;
			f[i][j][0]=f[i][j][1]=INT_MAX;
			f[i][j][0]=min(f[i][j][0],f[i+1][j][0]+(n-(j-i))*(a[i+1]-a[i]));
			f[i][j][0]=min(f[i][j][0],f[i+1][j][1]+(n-(j-i))*(a[j]-a[i]));
			f[i][j][1]=min(f[i][j][1],f[i][j-1][0]+(n-(j-i))*(a[j]-a[i]));
			f[i][j][1]=min(f[i][j][1],f[i][j-1][1]+(n-(j-i))*(a[j]-a[j-1]));
		}
	printf("%d\n",min(f[1][n][0],f[1][n][1]));
	//system("pause");
}


P10491 [USACO09NOV] The Chivalrous Cow B 是一个涉及在二维网格中按照特定规则(似象棋中马的走法)寻找最短路径的问题。以下是一些似的题目: #### 洛谷 P1135 奇怪的电梯 有一个奇怪的电梯,大楼的每一层楼都可以停电梯,而且第 $i$ 层楼($1 \leq i \leq N$)上有一个数字 $K_i$($0 \leq K_i \leq N$)。电梯只有两个按钮:上和下。从第 $i$ 层楼上楼时,若按下上的按钮,则会上升 $K_i$ 层;若按下下的按钮,则会下降 $K_i$ 层。当然,电梯不能上升到超过 $N$ 层,也不能下降到低于 $1$ 层。问从 $A$ 层到 $B$ 层至少要按多少次按钮。 #### 洛谷 P1331 海战 在一个矩形的海域上,分布着一些战舰,每艘战舰由若干个相邻(上下左右相邻)的格子组成。现在给出海域的地图,问这片海域上有多少艘战舰,并且判断这些战舰的分布是否符合规则(战舰不能相邻,即两艘战舰之间至少有一个空白格子)。 #### 洛谷 P1605 迷宫 给定一个 $N \times M$ 方格的迷宫,迷宫里有一些障碍格子不能通过,从起点 $(sx, sy)$ 出发,要到达终点 $(fx, fy)$,问有多少条不同的路径可以走。只能向上下左右四个方向移动。 以下是一个简单的广度优先搜索(BFS)示例代码,用于解决似的最短路径问题: ```python from collections import deque # 定义方向数组,上下左右 dx = [-1, 1, 0, 0] dy = [0, 0, -1, 1] def bfs(grid, start, end): rows, cols = len(grid), len(grid[0]) visited = [[False] * cols for _ in range(rows)] queue = deque([(start[0], start[1], 0)]) # (x, y, steps) visited[start[0]][start[1]] = True while queue: x, y, steps = queue.popleft() if (x, y) == end: return steps for i in range(4): new_x = x + dx[i] new_y = y + dy[i] if 0 <= new_x < rows and 0 <= new_y < cols and not visited[new_x][new_y] and grid[new_x][new_y] != '#': visited[new_x][new_y] = True queue.append((new_x, new_y, steps + 1)) return -1 # 无法到达 # 示例使用 grid = [ ['.', '.', '.', '#'], ['.', '#', '.', '.'], ['.', '.', '.', '.'], ['.', '#', '#', '.'] ] start = (0, 0) end = (3, 3) result = bfs(grid, start, end) print(result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值