【Mobius绮丽的辗转】莫比乌斯反演

Problem

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
1n500001ab500001cd500001k50000

Sub problem

Ans(i,j) 表示有多少个数对(x,y),满足x≤i,c≤y≤j,且gcd(x,y) = k
我们可以先求出 Ans(b,d),Ans(b,c1),Ans(a1,d),Ans(a1,c1)
然后 ans=Ans(b,d)Ans(b,c1)Ans(a1,d)+Ans(a1,c1)

那么问题就变成了如何求 Ans(n,m)

Discuss

讨论一下 Ans(n,m) 如何求,其中 n<m
先设 f(k) ,表示有多少个数对(x,y),满足x≤n,c≤y≤m,且gcd(x,y) = k
显然 Ans(n,m)=f(k)

再设 g(k) ,表示多少个数对(x,y),满足x≤n,c≤y≤m,且k|gcd(x,y)
因为 k|gcd(x,y) ,所以设 x=kx,y=ky
由于 x 只能取 1...nk y 只能取 1...mk

所以

g(k)=nkmk

同时,我们会有

g(k)=i=1nkf(ik)(1)

此时,我们将 g(k) f(k) 表示,并且 g(k) 是容易求出结果的。


Mobius

正片开始

我们非常功利地得出结论:
正当我们遇到这种式子时,

g(i)=d|if(d)(2)

g(i)=j=1nkf(ij)(3)

g[d] 积性函数,我们可以将上式转化为,
f(i)=d|ig(d)μ(id)

f(i)=j=1nkg(ij)μ(j)

其中
μ(x)=1,(1)k,0,x=1x=ki=1pi,piPotherwise


Discuss: μ 的性质

(1) μ 是积性函数
可以证明, μ 函数也是积性函数,所以 μ 可以通过线性筛法预处理,如下代码。

miu[1]=1;
for (i=2;i<maxn;i++){
    if (!bz[i]){
        p[++p[0]]=i;
        miu[i]=-1;
    }
    for (j=1;j<=p[0];j++){          
        k=i*p[j];
        if (k>=maxn) break;
        bz[k]=true;
        if (i%p[j]==0){
            miu[k]=0;
            break;
        }else miu[k]=-miu[i];
    }
}

(2) μ 的“和性质”

d|nμ(d)={0,1,n=1n>1

Back to the Problem

题目的式子是

g(k)=i=1nkf(ik)(1)

(2) 有异曲同工之妙,
所以
f(k)=i=1nkg(ik)μ(i)=i=1nknikmikμ(i)

然而,这并没有什么卵用,我们仍然过不了。
还能优化??

Deeplier discuss

我们发现,
其实 nikmik 很多时候是相同的取值。
所以我们可以将相同值的 nikmik 合并一起来计算,来优化时间复杂度。
显然 nik 的取值最多有 2n 种,
所以可以把时间复杂度优化到 O(2n+2m) 一次询问。

Ending

至此,我们已解决了这道题。
原题Code

Proving

μ 的“和性质”

求证:

d|nμ(d)={0,1,n=1n>1

证明:
n=1 时显然;
讨论 n>1 的情况,
因为 μ 的定义,
μ(x)=1,(1)k,0,x=1x=ki=1pi,piPotherwise

所以 d|nμ(d) 中,只有当 d 的任意质因子的指数不能超过1时, μ(d) 才会对 产生贡献。
我们设 n 质因子个数为q个。
那么,
d|nμ(d)=i=0qCiq(1)i

我们观察一下杨辉三角:
11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 1...

显然的是,当 q 是偶数时,由杨辉三角的对称性,
d|nμ(d)=i=0qCiq(1)i=0

现在考虑 q(q>1) 是奇数的情况,
i=0qCiq(1)i=C0qCqq+i=1q1Ciq(1)i=C0qCqq+i=1q1(Ci1q1+Ciq1)(1)i=C0qCqq+i=1q1Ci1q1(1)i+i=1q1Ciq1(1)i=i=0q1Ciq1(1)i+1+i=0q1Ciq1(1)i

q1 是偶数,综上,
d|nμ(d)=i=0qCiq(1)i=0

得证。

证明反演

求证:

g(i)=d|if(d)f(i)=d|ig(d)μ(id)

证明:
d|ig(d)μ(id)=d|iμ(id)d|df(d)

这里经历一个重要的过程:转换主体,
感性地想,所有的 μ(id) 都与 f(d) 相乘过,其中 d|d
反过来,那么所有的 f(d) 都与 μ(id) 相乘过,其中 d|d
所以,
d|iμ(id)d|df(d)=d|if(d)d|d,d|iμ(id)

x=id ,则 d=ix ,那么
d|if(d)d|d,d|iμ(id)=d|if(d)d|ix,ix|iμ(x)=d|if(d)x|idμ(x)

μ 的“和性质”,
d!=i 时,则 id>1 ,所以 x|idμ(x)=0
d=i 时,则 id=1 ,所以 x|idμ(x)=1
所以
d|if(d)μ(id)=d|if(d)x|idμ(x)=f(i)

综上,
f(i)=d|ig(d)μ(id)

得证。


另一个变式 (3) 类似。

True Ending

至此,Mobius反演已证明完毕。
这里写图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值