AI技术探索
文章平均质量分 90
对AI相关技术的基础知识、产品和技术的理论和使用研究和探索
JingFeng.Huang
软件工程硕士,PMP、CNIIT、信息系统高级项目经理。20年+的软件研发经历,对人工智能、产品创新、软件架构等有丰富经验和深入研究。近年来研究以大语言模型为主的人工智能应用解决方案落地。
展开
-
AI探索实践17 - 每个人都可以用10分钟轻松制作AI换脸、AI数字人视频的方法!
用剪映+facefusion实现数字人的制作原创 2024-03-26 09:09:31 · 3313 阅读 · 0 评论 -
AI探索实践16 - Typescript开发AI应用8:为大模型增加记忆(Memory)
要实现为大模型增加记忆功能,在本文中主要是RunnableWithMessageHistory对象的使用。通过配置数据连接信息,和定义获取历史记录方法,我们可以非常简单的就实现这个目的。在Langchain官网上还有很多对话存储的api,读者可以根据自己的实际情况选择不同的实现方式。从数据安全性角度来说,连接信息存储在前端(比如本文的例子)并不是一个好的选择。Langchain也支持通过token的形式连接云端系统,这种方式是一种选择。不过,我还是建议通过后端的api来实现存储。原创 2024-03-15 10:20:10 · 1309 阅读 · 0 评论 -
AI探索实践15 - Typescript开发AI应用7:实现Agent
本文的Agent实例,是利用了之前介绍的几个技能:附加对话历史、文档加载、文档分割、向量数据库、检索链等作为工具,并附加到agent的工具列表中。当面大模型遇到问题推理到需要使用某个工具时,就会调用该工具来实现一定的业务。原创 2024-03-14 12:19:59 · 1301 阅读 · 0 评论 -
AI探索实践14 - Typescript开发AI应用6:将对话历史记录添加到上下文
虽然在模板中,我们定义了一个 chat_history 的变量,但是我们在调用链时,并不能直接将上面定义的消息数组: chatHistory 传入链中。在用户和大模型的对话过程中,为了更好的帮助大模型提供准确的回答,除了加载第三方文档数据之外,还有一个重要的内容:用户和大模型的对话历史记录。由于大模型每次对话对于token长度的处理能力有所限制,我们应该在页面上引导用户在不同的问题,使用新的会话。这个问题和抓取网页的内容完全不相干,但是由于有对话的历史记录的存在,大模型得以准确地回答。原创 2024-03-12 09:14:40 · 1183 阅读 · 1 评论 -
AI探索实践13 - Typescript开发AI应用5:抓取网页、文档分割、向量存储与检索链语义检索的使用 【推荐】
本文介绍了如何使用文档加载、使用抓取网页内容工具cheerio来实现将网页内容抓取下来并转换为文档集合,通过文档分割、文档嵌入化,将抓取的内容嵌入化并存入内存向量数据库。最后介绍了如何从向量数据库检索相关性最高的3个文档,并得到准确的模型响应。原创 2024-03-11 09:00:00 · 1102 阅读 · 1 评论 -
AI探索实践12 - Typescript开发AI应用4:大模型响应数据的格式化输出
通过使用LangChain的相关类,实现了对大模型响应结果解析成字符串、数组和对象的格式化输出原创 2024-03-09 09:44:39 · 1726 阅读 · 1 评论 -
AI探索实践11 - Typescript开发AI应用3:Prompt Template (提示语模版) 功能
本篇文章将介绍一个比较重要的概念 Prompt Template - 提示语模板,以及如何在前端实现。原创 2024-03-08 10:50:36 · 1681 阅读 · 1 评论 -
AI探索实践10 - Typescript开发AI应用2:前端实现本地模型流式响应输出
文本主要是记录如何用前端技术,实现流式响应(打字机)的一种方法。通过使用前端流请求与响应的处理方法,设计必要的变量来控制数据读取和显示逻辑,来实现设计目标。原创 2024-03-07 09:57:03 · 1782 阅读 · 1 评论 -
AI探索实践9 - Typescript开发AI应用1:不用Python!用前端也能开发一个本地运行的“ChatGPT”!
借助LangChain的js库,使用前端程序也能开发出ChatGPT之类的大模型应用了!原创 2024-03-05 21:00:50 · 600 阅读 · 1 评论 -
AI探索实践8 - 本地运行大模型
大模型的本地化运行,是创建企业内部AI应用重要组成部分。选取开源的、对中文支持友好的、开源协议友好的开源大模型可以帮助我们快速建立低成本、高性能的AI应用。通过使用Ollama软件,让我们能够轻松搭建和运行一个本地大模型实例。原创 2024-03-04 10:15:05 · 3137 阅读 · 1 评论 -
AI探索实践7 - 打造企业智能体(AI Agent)的重要技术-ReAct
ReAct并不是指Facebook开源的前端开发框架react,而是一种实现AI Agent的一种重要方法原创 2024-03-02 17:20:54 · 1528 阅读 · 0 评论 -
英伟达高级研究科学家Jim Fan:AI的下一步的重大挑战!
他的演讲,为AI的未来发展设定了宏伟的蓝图,描绘了一个在多个维度上高度发展的AI技术景观。从AlphaGo的胜利到Voyager和MetaMorph的开发,再到基础智能体(Foundation Agent)的构想,我们可以看到AI技术如何从专注于单一任务的实现,逐步发展到具有广泛应用和自我进化能力的全能AI。当OpenAI在将海量的文本,训练输出高质量的文本、图片、视频时,英伟达在根据同样的原则,在研究将海量的实体+任务提示的数据,训练输出动作,这项研究将能够使所有能够移动的物体,都能够实现自动化!原创 2024-03-01 13:51:24 · 214 阅读 · 1 评论 -
AI探索实践6 - 打造企业智能体(AI Agent)的重要技术-RAG
RAG模型正在给智能化服务领域带来一场变革。客服机器人、虚拟助手将因RAG的进步而变得更加智能,能够提供更加精准和个性化的服务。随着RAG模型对上下文的理解能力增强,它们将能够更自然地参与到复杂对话中,提供无缝的用户体验。原创 2024-02-29 15:17:43 · 995 阅读 · 1 评论 -
AI探索实践5 - 打造企业智能体(AI Agent)的重要技术-向量数据库
简单来说,向量数据库是一种专门设计来存储和处理向量形式数据的数据库系统。向量在很多不同的领域都有应用,例如地理信息系统、机器学习、计算机图形学等。在这些领域中,向量数据是一种基本的数据类型,能够表示空间中的点、线、面等对象。向量代表了物品或实体的特征,可以是高维数据点,如一张图像、一段音频或一篇文本的数学表达。在向量数据库中,每个数据点都是一个有序的数值列表,我们可以通过这些数值来量化比较数据点之间的相似程度。在具体使用中,人们常常通过SQL或其它查询语言向向量数据库查询数据。原创 2024-02-26 12:34:39 · 826 阅读 · 1 评论 -
AI和Vision Pro不需要杀手级应用 [译]
软件推动硬件采用的情况比你想象的要罕见,如果我们想要构建、投资并分析下一代计算范式的赢家,我们必须重新思考比杀手级应用更大的东西——我称之为杀手级效用理论!原创 2024-02-25 08:25:30 · 889 阅读 · 0 评论 -
AI探索实践4 - 让AI翻译马斯克推荐的视频的2388行英文字幕的折腾过程、问题和收获
通过处理大数据量内容,发现国内大模型的一些本土化特点。文末的视频是最大亮点。原创 2024-02-24 08:26:27 · 1148 阅读 · 1 评论 -
AI探索实践3 - 3秒钟生成海量内容指定格式的重点分析、结论
AI文本摘要就是使用人工智能技术自动将长篇文章浓缩为几个关键句子或段落,帮助我们迅速理解文章的核心内容。想象一下,这项技术可以帮我们快速审阅大量文档,节约宝贵的时间,让我们有更多精力去做更有创意和战略意义的工作。原创 2024-02-22 21:12:00 · 930 阅读 · 1 评论 -
AI探索实践2 - 3分钟为视频加上双语字幕
无需懂视频编辑,利用国内大模型+剪映3分钟给你的视频加上中英文字幕原创 2024-02-22 08:17:02 · 1635 阅读 · 2 评论 -
AI探索实践1- 使用大模型情感分析
在最近几年,深度学习在自然语言处理领域取得的突破性进展,已经彻底改变了我们理解和挖掘文本数据的方式。特别是在情感分析这一具有挑战性的任务上,大模型证明了其无与伦比的能力。深度学习的核心理念在于通过模仿生物神经网络的结构和功能,构建能够进行复杂非线性变换的人工神经网络。这些网络由多层神经元组成,能够自动提取和学习数据的高层特征,无需人工设计复杂的特征工程。原创 2024-02-21 08:22:18 · 2722 阅读 · 2 评论 -
软件2.0 [译]
AI对软件开发的影响是深远且革命性的。随着神经网络和机器学习技术的发展,我们正在见证从传统的软件1.0向软件2.0的转变。这种转变的核心在于,软件2.0通过学习大量数据集和优化算法,能够自动生成和改进代码,而不再依赖于人类程序员手动编写的详细指令。原创 2024-02-19 08:33:10 · 787 阅读 · 1 评论