咖啡因有助于轮班工作者避免错误

咖啡爱好者的好消息:一项新的调查表明,喝咖啡可以帮助夜班工人避免犯错误。

至少有15%的工人在工业化国家被认为从事夜间轮班工作或永久夜间工作,从事这类工作有可能会影响他们的生物钟。研究人员解释说,有些患有轮班工作紊乱的工人,他们只有很短的睡眠时间,并因此在工作时犯困,提高了出错的风险。

在Cochrane图书馆5月12日发布的的这份调查中,研究者研究了13个轮班,研究咖啡因对工作绩效的影响。但是,大多数的研究是建立在模拟的工作场所上。

参与的调查的人员通过各种形式服入咖啡因,包括咖啡,药片,能量饮料,或者是食物,还有的是通过安慰剂。

评论者发现,咖啡因似乎做了比小睡防止或安慰剂更好的工作来避免错误,并改善例如记忆,注意力,感知和推理方面的表现。

伦敦热带医学学院首席研究员凯瑟琳长青春科尔,在一个由该杂志发行的新闻稿上表示:"这似乎可以合理地假设,减少错误意味着较少的伤害,虽然我们不能量化减少量。"

作者们指出,目前仍然需要研究年长工人,因为年龄在20至30的参与者最多。


英文原文地址:http://news.health.com/2010/05/12/caffeine-helps-shift-workers-avoid-mistakes/

数据集介绍:高空视角飞机跑道船只目标检测数据集 一、基础信息 数据集名称:高空视角飞机跑道船只目标检测数据集 图片数量: - 训练集:3,375张图片 - 验证集:331张图片 - 测试集:164张图片 分类类别: - airplane:涵盖多种机型的高空目标检测样本 - runway:包含机场跑道及地面辅助设施的关键区域标注 - ship:覆盖不同尺寸和航向的船只检测样本 标注格式: YOLO格式,包含目标检测所需的归一化坐标及类别标签 数据特性: - 无人机及高空平台采集视角 - 覆盖陆地、海洋、机场等多场景 - 包含目标小尺寸、密集排列等真实检测挑战 二、适用场景 航空交通管理系统开发: 支持构建自动识别空中飞行器与地面跑道的AI模型,提升空域管理效率 无人机自主导航系统: 为无人机提供机场跑道识别与障碍物避让的基准训练数据 港口船舶监控解决方案: 训练船舶检测模型,支持海上交通流量统计与异常行为识别 遥感图像分析工具: 适用于卫星/航拍影像中的基础设施识别与地理信息系统开发 三、数据集优势 多目标协同检测能力: 同时包含空中目标(飞机)、地面设施(跑道)、海上目标(船舶)的关联场景数据 高适应性标注: 兼容YOLOv5/YOLOv8等主流目标检测框架,支持快速模型迭代 视角多样性: 涵盖不同高度、角度、光照条件下的无人机及高空拍摄视角 专业数据分割: 严格划分训练集/验证集/测试集,符合工业级模型开发标准
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值