Apache Ignite

This book covers a verity of topics, including in-memory data grid, highly available service grid, streaming (event processing for IoT and fast data) and in-memory computing use cases from high-performance computing to get performance gains. The book will be particularly useful for those, who have the following use cases: You have a high volume of ACID transactions in your system. You have database bottleneck in your application and want to solve the problem. You want to develop and deploy Microservices in a distributed fashion. You have an existing Hadoop ecosystem (OLAP) and want to improve the performance of map/reduce jobs without making any changes in your existing map/reduce jobs.. You want to share Spark RDD directly in-memory (without storing the state into the disk), which can dramatically increase the performance of the Spark jobs. You are planning to migrate to microservices and the web session clustering is the problem for you. You are planning to process continuous never-ending streams and complex events of data in a scalable and fault-tolerant fashion. You want to use distributed computations in parallel fashion to gain high performance, low latency, and linear scalability. You want to accelerate applications performance without changing code. What you will learn: In-memory data fabrics use-cases and how it can help you to develop near real-time applications. In-memory data fabrics detail architecture. Caching strategies and how to use In-memory caching to improve the performance of the applications. SQL grid for in-memory caches. How to accelerates the performance of your existing Hadoop ecosystem without changing any code. Sharing Spark RDD states between different Spark applications for improving performance. Processing events & streaming data, integrate Apache Ignite with other frameworks like Storm, Camel, etc. Using distributed computing for building low-latency software. Developing distributed Microservices in fault-tolerant fashion. For every topic, a complete application is delivered, which will help the audience to quick start with the topic. The book is a project-based guide, where each chapter focuses on the complete implementation of a real-world scenario, the commonly occurring challenges in each scenario has also discussed, along with tips and tricks and best practices on how to overcome them. Every chapter is independent and a complete project.
My first acquaintance with High load systems was at the beginning of 2007, and I started working on a real-world project since 2009. From that moment, I spent most of my office time with Cassandra, Hadoop, and numerous CEP tools. Our first Hadoop project (the year 2011-2012) with a cluster of 54 nodes often disappointed me with its long startup time. I have never been satisfied with the performance of our applications and was always looking for something new to boost the performance of our information systems. During this time, I have tried HazelCast, Ehcache, Oracle Coherence as in-memory caches to gain the performance of the applications. I was usually disappointed from the complexity of using these libraries or from their functional limitations. When I first encountered Apache Ignite, I was amazed! It was the platform that I’d been waiting on for a long time: a simple spring based framework with a lot of awesome features such as DataBase caching, Big data acceleration, Streaming and compute/service grids. In 2015, I had participated in Russian HighLoad++ conference1 with my presentation and started blogging in Dzone/JavaCodeGeeks and in my personal blog2 about developing High-load systems. They became popular shortly, and I received a lot of feedback from the readers. Through them, I clarified the idea behind the book. The goal of the book was to provide a guide for those who really need to implement an in-memory platform in their projects. At the same time, the idea behind the book is not writing a manual. Although the Apache Ignite platform is very big and growing day by day, we concentrate only on the features of the platform (from our point of view) that can really help to improve the performance of the applications. We hope that High-performance in-memory computing with Apache Ignite will be the go-to guide for architects and developers: both new and at an intermediate level, to get up and to develop with as little friction as possible.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值