递推
“递推”是计算机解题的⼀种常⽤⽅法。利⽤“递推法”解题⾸先要分析归纳出“递推关系”。如经典的斐波那契数列问题,⽤ f (i)表⽰第i 项的值,则 f (1) =0,f(2) =1,在 n>2 时,存在递推关系:f (n) = f(n-1) + f(n-2)。
在递推问题模型中,每个数据项都与它前⾯的若⼲个数据项(或后⾯的若⼲个数据项)存在⼀定的关联,这种关联⼀般是通过⼀个“递
推关系式”来描述的。
求解问题时,需要从初始的⼀个或若⼲数据项出发,通过递推关系式逐步推进,从⽽推导计算出最终结果。这种求解问题的⽅法叫“递推法”。其中,初始的若⼲数据项称为“递推边界”。
解决递推问题有三个重点:
1、建⽴正确的递推关系式;
2、分析递推关系式的性质;
3、根据递推关系式编程求解。
递推法分为“顺推”和“倒推”两类模型:
1、顺推,就是从问题的边界条件(初始状态)出发,通过递推关系式依次从前往后递推出问题的解;
2、倒推,就是在不知道问题的边界条件(初始状态)下,从问题的最终解(⽬标状态或某个中间状态)出发,反过来推导问题的初始状态。
【例题】斐波那契数列
题目描述
斐波那契数列,又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……
在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
给定一个整数n,求斐波那契数列第n项是多少?
输入格式
一行1个整数n:范围在[1,30]。
输出格式
1个整数
输入/输出例子1
输入:
6
输出:
8
【参考程序】
#include<bits/stdc++.h>
using namespace std;
int a[35],k;
int main(){
cin>>k;
a[1]=1,a[2]=1;
for(int i=3;i<=k;i++)
a[i]=a[i-1]+a[i-2];
cout<<a[k];
return 0;
}