动态规划(DP)和背包问题讲解

动态规划

什么是动态规划

动态规划(简称 DP),是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用于有重叠子问题和最优子结构性质的问题。(这个感觉太官方了,简单来说动态规划就是给定一个问题,我们把它拆成一个个子问题,直到子问题可以直接解决。然后呢,把子问题答案保存起来,以减少重复计算。再根据子问题答案反推,得出原问题解的一种方法。

动态规划核心思想

动态规划最核心的思想, 就在于拆分子问题,记住过往,减少重复计算

讲解动态规划

我们通过题目来讲解

例题

数字三角形

题目描述

给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层,要求找出一条路径,使路径上的数字的和最大。

        7
      3   8
    8   1   0
  2   7   4   4
4   5   2   6   5

输入格式

第一行包含整数 n
,表示数字三角形的层数

接下来 n
行,每行包含若干整数,其中第 i
行表示数字三角形第 i
层包含的整数。

输出格式

输出一个整数,表示最大的路径数字和。

样例 #1

样例输入 #1

5
7
3 8
8 1 0 
2 7 4 4
4 5 2 6 5

样例输出 #1

30

提示

1 ≤ n ≤ 500

−10000 ≤ 三角形中的整数 ≤ 10000

解题思路

这里我们用刚刚讲的DP,我们可以计算每一条路径的值,然后找到最大的那一条。最后输最大路径值。

代码如下

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int n;
	cin>>n;
	int a[n][n]={};//定义一个数组是空的
	for(int i=0;i<n;i++)
	{
		for(int j=0;j<=i;j++)  cin>>a[i][j];//输入每一行的数字
		if(i==0)   continue;//特判如果是i=0,就不进行循环,
		for(int j=0;j<=i;j++)
		{
			if(j==0)
		        a[i][j]=a[i][j]+a[i-1][j];//如果j=0,那么就计算最左边的那一条路的
		    else if(j==i)
		        a[i][j]=a[i][j]+a[i-1][j-1];//如果j=i那就计算最右边的那一条路
	    	else
		        a[i][j]=a[i][j]+max(a[i-1][j],a[i-1][j-1]);//计算中间的所有路径代码

		}
	}
	int m=a[n-1][0];
	for(int j=0;j<n;j++)
	   m=max(m,a[n-1][j]);//找到最大的那一条路径
	cout<<m;
	return 0;
}

01背包问题

有 N件物品和一个容量是 V的背包。每件物品只能使用一次。

第 i件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i件物品的体积和价值。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤1000

0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8

题解

1)状态f[i][j]定义:前 i 个物品,背包容量 j下的最优解(最大价值):

当前的状态依赖于之前的状态,可以理解为从初始状态f[0][0] = 0开始决策,有 N件物品,则需要 N 次决 策,每一次对第 i件物品的决策,状态f[i][j]不断由之前的状态更新而来。
2)当前背包容量不够(j < v[i]),没得选,因此前 i个物品最优解即为前 i−1−1 个物品最优解:对应代码:f[i][j] = f[i - 1][j]。
3)当前背包容量够,可以选,因此需要决策选与不选第 i 个物品:
选:f[i][j] = f[i - 1][j - v[i]] + w[i]。
不选:f[i][j] = f[i - 1][j] 。
我们的决策是如何取到最大价值,因此以上两种情况取 max() 。
代码如下:

#include<bits/stdc++.h>

using namespace std;

const int MAXN = 1005;
int v[MAXN];    // 体积
int w[MAXN];    // 价值 
int f[MAXN][MAXN];  // f[i][j], j体积下前i个物品的最大价值 

int main() 
{
    int n, m;   
    cin >> n >> m;
    for(int i = 1; i <= n; i++) 
        cin >> v[i] >> w[i];

    for(int i = 1; i <= n; i++) 
        for(int j = 1; j <= m; j++)
        {
            //  当前背包容量装不进第i个物品,则价值等于前i-1个物品
            if(j < v[i]) 
                f[i][j] = f[i - 1][j];
            // 能装,需进行决策是否选择第i个物品
            else    
                f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
        }           

    cout << f[n][m] << endl;

    return 0;
}


完全背包问题

题目

有 N种物品和一个容量是 V的背包,每种物品都有无限件可用。

第 i种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N行,每行两个整数 vi,wi,用空格隔开,分别表示第 i种物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000

0<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

10

题解

相比于 0-1 背包,完全背包其实就是每个物品有无穷多个,寻找合理的方案来实现最大价值;
其核心就是

for(int i=1;i<=n;i++)  
{
    for(int j=we[i];j<=m;j++) 
    {
        dp[j]=max(dp[j],dp[j-we[i]]+val[i]);
    }
}

完整代码如下

#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;
const int N = 100000;

int dp[N << 1],we[N << 1],val[N << 1],cnt,ans,n,m;

int read() 
{
    char c = getchar();
    int f = 1, x = 0;
    while(!isdigit(c)) {if(c == '-') f = -1;c = getchar();}
    while(isdigit(c)){x = x * 10 + c - 48;c = getchar();}
    return x * f;
}

int main()
{
    n = read();  //数量
    m = read(); //体积
    for(int i=1;i<=n;i++)
    {
        we[i] = read(); //该物体的体积
        val[i] = read(); //该物体的价值
    }
    for(int i=1;i<=n;i++)  //对 “n”个物品进行枚举
    {
        for(int j=we[i];j<=m;j++)  //注意从小到大 -这一点要和0-1“背包”区别一下
        {
            dp[j]=max(dp[j],dp[j-we[i]]+val[i]); //状态转移方程-寻找最大价值
        }
    }
    cout<<dp[m]<<endl;//最后输出
    return 0;
}

多重背包问题

题目描述

有 N
种物品和一个容量是 V
的背包。

第 i
种物品最多有 si
件,每件体积是 vi
,价值是 wi

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数,N,V
,用空格隔开,分别表示物品种数和背包容积。

接下来有 N
行,每行三个整数 vi,wi,si
,用空格隔开,分别表示第 i
种物品的体积、价值和数量。

输出格式

输出一个整数,表示最大价值。

样例 #1

样例输入 #1

4 5
1 2 3
2 4 1
3 4 3
4 5 2

样例输出 #1

10

提示

0<N,V≤100

0<vi,wi,si≤100

题解

咱们要做这道题就要挨个物品判断要不要拿能不能拿,同时通过遍历背包容积判断每个容积下的最优解,以此来判断该种物品究竟拿了能不能带到此时的最优解。用二维数组dp[i-1][x],就可以完美的表示第i件物品之前容积为x时的最优解(第i件物品和它后面的物品都不可能在这个背包)

下来用代码解释

#include <bits/stdc++.h>
using namespace std;
#define the_smallest_unit 0.5
#define item_max 1005
int dp[item_max][item_max];
int m, n;
int item_v[1005], item_w[1005];
int main(void)
{
//输入
    cin >> n >> m;
    int i, j, k;
    for(i=1;i<=n;i++)
    {
        cin >> item_w[i] >> item_v[i];
    }
    //正题
    //一维遍历物品看要不要拿,二维遍历背包容积,然后在数组中存储该状态下的最优价值,
    //那么在判断下一个物品时就能直接使用该最优解
    for (i = 1; i <= n; i++)
    {
        for (j = 1; j <= m; j++)
        {
            if (j >= item_w[i])//能装下
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - item_w[i]] + item_v[i]);//看拿不拿,肯定选最优解
                //此时的dp[i - 1][j - item_w[i]]就是判断该物品之前容积为j-该物品容积的背包所能装的最优解
            else//装不下
                dp[i][j] = dp[i - 1][j];//装不下和能装下但不拿的情况一样
        }
    }
    cout << dp[n][m] << endl;
    return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
动态规划中,背包问题是一个经典的优化问题,它可以分为0-1背包问题和完全背包问题两种类型。 1. 0-1背包问题: 假设有一个背包,它的容量为C。现在有n个物品,每个物品的重量分别为w1, w2, ..., wn,价值分别为v1, v2, ..., vn。要求选择一些物品放入背包中,使得在不超过背包容量的前提下,背包中物品的总价值最大化。 这里的0-1表示每个物品要么放入背包中,要么不放入。 2. 完全背包问题: 与0-1背包问题类似,但不同之处在于每个物品可以选择放入背包多次(数量无限),即每个物品的选择是一个无限的选择。 解决这两类背包问题的常用方法是使用动态规划动态规划的基本思想是将原问题拆解成若干子问题,并通过求解子问题的最优解来求解原问题的最优解。 具体来说,对于0-1背包问题,可以使用一个二维数组dp[i][j]来表示前i个物品放入容量为j的背包中所能获得的最大价值。状态转移方程如下: dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi) 其中,dp[i-1][j]表示不选择第i个物品时的最大价值,dp[i-1][j-wi] + vi表示选择第i个物品时的最大价值。 对于完全背包问题,可以使用一个一维数组dp[j]来表示容量为j的背包所能获得的最大价值。状态转移方程如下: dp[j] = max(dp[j], dp[j-wi] + vi) 其中,dp[j]表示不选择第i个物品时的最大价值,dp[j-wi] + vi表示选择第i个物品时的最大价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值