114. 不同的路径

题目分析:创建一个M*N的数组 

子问题,f(m,n)代表从(0,0)到(m,n)的路径数,则f(m,n)=f(m-1,n)+f(m,n-1);

有一个机器人的位于一个 m × n 个网格左上角。

机器人每一时刻只能向下或者向右移动一步。机器人试图达到网格的右下角。

问有多少条不同的路径?

 注意事项

n和m均不超过100

样例

给出 m = 3 和 n = 3, 返回 6.
给出 m = 4 和 n = 5, 返回 35.

标签 
先介绍一种让我觉得特别牛的解法,只用O(n)的空间复杂度,思路就是把当前维护的数组dp[1:n-1]当作上一行的数组,把dp【0,0】当作最右边全是1的数组,进行实时更新,瞠目结舌。
    int uniquePaths(int m, int n) {
        // write your code here
        int *dp = new int[n];
        dp[0] = 1;
        for (int i = 0; i < m; i++){
            for (int j = 1; j < n; j++){
                dp[j] = dp[j - 1] + dp[j];
            }
        }
        return dp[n - 1];
    }
再写自己容易懂的笨方法。


class Solution {
public:
    /**
     * @param m: positive integer (1 <= m <= 100)
     * @param n: positive integer (1 <= n <= 100)
     * @return: An integer
     */
     
     //递归算法会超时
     /*
    int sum;
    int uniquePaths(int m, int n) {
        // write your code here
        if(m==n&&n==1)
        ++sum;
        
        if(m>1)
        uniquePaths(m-1,n);
        if(n>1)
        uniquePaths(m,n-1);
        
        return sum;
    }
    */
    //动态规划法
    int uniquePaths(int m, int n) {
        if(m<1||n<1)
        return 0;
        
        vector<vector<int> > dp(m+1,vector<int>(n+1,0));
        for(int i=1;i<=m;i++)
        dp[i][1]=1;
        for(int i=1;i<=n;i++)
        dp[1][i]=1;
        
        for(int i=2;i<=m;i++){
            for(int j=2;j<=n;j++){
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
                //cout<<dp[i][j]<<" ";
            }
            //cout<<endl;
        }
        return dp[m][n];
    }
    
};



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值