批量归一化 Batch normalization

本文探讨了批量归一化(Batch Normalization)在深度学习中的作用,它通过对每一层输入进行标准化处理,改善了梯度消失和爆炸问题。首先,数据在乘以权重W后进行批量均值和方差的减除,然后通过缩放(γ)和平移(β)调整,接着通过ReLU激活函数,最后得到下一层隐藏层的输入。批量归一化加速了神经网络的训练过程并提高了模型的泛化能力。
摘要由CSDN通过智能技术生成

在这里插入图片描述
[标准化出炉后的数据当作第一层的输入,标准化处理为均值为0,方差为1的特征数据]
现在我们加入批量归一化的操作,就是将乘完权重 W 后的数据 s 1
1

先减掉这一批量数据的均值和方差,得到 s 2
2

后再去进行缩放(乘以 γ ) 和平移(加上 β )。得到 s 3
3

后再经过一个 ReLU 函数,再得到 h 1
1

作为下一层(隐藏层第一层)的输入。
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值