[标准化出炉后的数据当作第一层的输入,标准化处理为均值为0,方差为1的特征数据]
现在我们加入批量归一化的操作,就是将乘完权重 W 后的数据 s 1
1
先减掉这一批量数据的均值和方差,得到 s 2
2
后再去进行缩放(乘以 γ ) 和平移(加上 β )。得到 s 3
3
后再经过一个 ReLU 函数,再得到 h 1
1
作为下一层(隐藏层第一层)的输入。
批量归一化 Batch normalization
最新推荐文章于 2024-07-22 17:57:26 发布
本文探讨了批量归一化(Batch Normalization)在深度学习中的作用,它通过对每一层输入进行标准化处理,改善了梯度消失和爆炸问题。首先,数据在乘以权重W后进行批量均值和方差的减除,然后通过缩放(γ)和平移(β)调整,接着通过ReLU激活函数,最后得到下一层隐藏层的输入。批量归一化加速了神经网络的训练过程并提高了模型的泛化能力。
摘要由CSDN通过智能技术生成