诸君,在对数据框进行数据计算时,是否常常会遇到数据框内包含空值的情况?在这种情况下,如何处理空值,使得数据框内数据能够计算,是今天的论道的课题。
一、删除包含空值的行或列(dropna())
依赖库:pandas
函数:dropna()
作用:是用来删除(或称为“丢弃”)包含缺失值(NaN或None)的行或列。
常用参数:
- axis:默认为0,表示操作行。为1,则操作列。
- how:默认为 'any' ,表示任何值缺失,删除该行或列。为 'all' 时,所有值都为缺失,才删除该行或列。
- thresh:非NA/null值的最小数量,如果一行/列中的非NA/null值数量小于这个值,则删除该行/列。
- subset:指定列。例如,subset=['A', 'B'] 表示只在列'A'和'B'中查找缺失值。
- inplace:默认为False,表示不修改原始DataFrame,返回