题目链接
本题是2005年ICPC欧洲区域赛中欧赛区的C题
题意
有 n 个已知三元组(xi, yi, zi),你的任务是统计有多少个三元组(x, y, z)满足:对于任意已知三元组(xi, yi, zi),要么x>xi,要么y>yi,要么z>zi(可以有多个条件同时满足)。上述所有3元组的三个分量都是1~m 的正整数。比如,若m=3,已知一个三元组(2,2,2),有19 个三元组满足条件。
分析
按题目交代的m=3,仅一个三元组(2,2,2)的例子,答案的计算过程是m^3-x*y*z=3*3*3-2*2*2=19;若有多个三元组,其实先求出各个三元组代表的长方体体积并v,则答案就是m^3-v。
长方体体积求并,似乎没有高效的算法模板,如果切片操作再累加(即枚举z坐标),则可以转化成矩形面积并,似乎可以套用线段树扫描线模板求解,不过矩形是动态加入的,扫描线分割的区间也要做动态处理,要对模板做很多改动,容易出错,因此寻求不用线段树模板的方法。
本题有一个特殊之处:其实所有长方体均包含原点(0,0,0)这个顶点,那么切片后所有矩形左下角也是同一个点(0,0)。利用这一点可以对扫描线算法做优化,使得代码更简洁高效,优化思路和《训练指南》3.5节例题Efficient Solutions相似:加入新点(矩形)时,删除那些被其覆盖的矩形,维持点集的单调性(x递增且y递减),由于每个矩形最多被删除一次,可以借助stl的set在O(nlogn)复杂度下实现。
完整思路:
1、将所有三元组按z值递减排序;
2、倒序枚举z值,遇到zi>=z的三元组(xi,yi,zi),则将矩形(xi,yi)加入求面积并s然后更新答案;
3、为便于集合操作,可以插入两个冗余点(0,m+1)、(m+1,0);
AC代码
#include <iostream>
#include <algorithm>
#include <set>
using namespace std;
#define N 100010
int x[N], z[N], a[N], m, n; long long y[N], u;
struct cmp {
bool operator() (int i, int j) const {
return x[i] != x[j] ? x[i] < x[j] : y[i] < y[j];
}
};
set<int, cmp> s;
bool cmpz(int i, int j) {
return z[i] > z[j];
}
void add(int i) {
set<int, cmp>::iterator it = s.upper_bound(i), nex = it--, pre = it; long long yn = y[*nex];
if (y[i] <= yn) return;
while (y[*it] <= y[i]) u -= (x[*it] - x[*--pre]) * (y[*it] - y[*nex]), nex = s.erase(it--);
u += (x[i] - x[*it]) * (y[i] - yn); s.insert(i);
}
void solve() {
a[0] = y[n+1] = 0; x[n+1] = N;
for (int i=1; i<=n; ++i) cin >> x[i] >> y[i] >> z[i], a[i] = i;
sort(a, a+n+1, cmpz);
s.clear(); s.insert(0); s.insert(n+1);
long long ans = 0, q = m * (long long)m;
for (int i=u=0, t=m; i<n; t = z[a[i]]) {
while (i<n && z[a[i]] >= t) add(a[i++]);
ans += (q - u) * (t - z[a[i]]);
}
cout << ans << endl;
}
int main() {
ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
x[0] = z[0] = 0; y[0] = N;
while (cin>>n>>m && n) solve();
return 0;
}