循环流网络的费用问题

费用为负的网络流

  对于源点为s汇点为t并且流量F确定的含负权边的网络,可以通过变形消去负权边:
  新增源点S和汇点T,从S向s连一条容量为F费用为0的边,从t向T连一条容量为F费用为0的边;对于负权边e=(u,v)可以让其一开始就已经满流(即从v向u连一条容量为 c e c_e ce费用为 − d e -d_e de的边),再从S向v连一条容量为 c e c_e ce费用为0的边,从u向T连一条容量为 c e c_e ce费用为0的边;对正权边则同原始网络一样连边。
费用为负的网络流
  求新图流量为 F + ∑ 负权边 e c e {\textstyle F+\sum_{负权边e}c_e} F+负权边ece的最小费用,再加上 ∑ 负权边 e c e × d e {\textstyle \sum_{负权边e}c_e\times d_e} 负权边ece×de,就是原图流量为F的最小费用。
  最后,可以对结点u与S和T的边进行合并处理,计 s → u s\rightarrow u su的容量为 c s u cs_u csu u → t u\rightarrow t ut的容量为 c t u ct_u ctu:当 c s u > c t u cs_u>ct_u csu>ctu时,从S向u连容量为 c s u − c t u cs_u-ct_u csuctu费用为0的边;当 c s u < c t u cs_u<ct_u csu<ctu时,从u向T连容量为 c t u − c s u ct_u-cs_u ctucsu费用为0的边;当 c s u = c t u cs_u=ct_u csu=ctu时,不连边。
  消除负权边后,可以用Dijkstra算法求最小费用,效率比BellmanFord算法高。当然,求最小费用流,有专门的PrimalDual原始对偶算法,不用在建图时消除负权边。

循环流网络的费用

  有一些网络流其有向图是强连通的但没有源点也没有汇点,而且每个结点都要满足流量平衡,所以也没有“最大流”这种说法,称为循环流(circulation)。对于要求最大费用的循环流网络,将边权取相反数,可变成求最小费用循环流。最小费用循环流问题也可能出现负权边,同样可以套用上面处理负权边的思想来处理。
  若负权边e=(u,v)可以取或不取,则预先使之满流(即反向连边,从v向u连一条容量为 c e c_e ce费用为 − d e -d_e de的边)。实际上,满流意味着这条负权边的流量可以回退,即此负权边可以取或不取。若回退流量,意味着此负权边组成的最小权值圈为正圈,又由于求最小费用流,不取正圈,故将流退回。这种情况可以像上面费用为负的网络流那样画图帮助理解,还是比较好理解的。
  若负权边e=(u,v)必须取到,则不预先使之满流(即按原图连边,从u向v连一条容量为 c e c_e ce费用为 d e d_e de的边)。这种情况不那么直观,需要画图帮助理解。

一些题目

UVa1659 Help Little Laura

  平面上有m条有向线段连接了n个点。你从某个点出发顺着有向线段行走,给沿途经过的每条线段涂一种不同的颜色,最后回到起点。你可以多次行走,给多个回路涂色。可以重复经过一个点,但不能重复经过一条有向线段。如下图所示是一种涂色方法(虚线表示未涂色)。
Help Little Laura
  每涂一个单位长度将得到x分,但每使用一种颜料将扣掉y分。假定颜料有无限多种,如何涂色才能使得分最大?输入保证若存在有向线段u->v,则不会出现有向线段v->u。n≤100,m≤500,1≤x,y≤1000。
  这是典型的负权边可以取或不取的题目,AC代码如下:

#include <iostream>
#include <iomanip>
#include <cstring>
#include <cmath>
using namespace std;

#define N 102
#define M 1780
struct edge {int u, v, cap, flow; double cost;} e[M];
int g0[N][N], cnt0[N], x[N], y[N], n, s, t, kase = 0;
int g[N][N], q[M*N], cnt[N], a[N], p[N], c; double d[N], cc; bool vis[N];

void add_edge(int u, int v, int cap, double cc) {
    e[c] = {u, v, cap, 0, cc}; g[u][cnt[u]++] = c++; e[c] = {v, u, 0, 0, -cc}; g[v][cnt[v]++] = c++;
}

double solve() {
    cin >> s >> t;
    memset(cnt0, 0, sizeof(cnt0)); memset(a, cc = 0, sizeof(a)); memset(cnt, c=0, sizeof(cnt));
    for (int i=1; i<=n; ++i) {
        cin >> x[i] >> y[i];
        int v; while (cin>>v && v) g0[i][cnt0[i]++] = v;
    }
    for (int u=1; u<=n; ++u) for (int i=0; i<cnt0[u]; ++i) {
        int v = g0[u][i]; double d = t-s*sqrt((x[u]-x[v])*(x[u]-x[v])+(y[u]-y[v])*(y[u]-y[v]));
        if (d < 0) {
            cc -= d; ++a[v]; --a[u]; add_edge(v, u, 1, -d);
        } else add_edge(u, v, 1, d);
    }
    s = 0; t = n+1;
    for (int u=1; u<=n; ++u) if (a[u] != 0) a[u] > 0 ? add_edge(s, u, a[u], 0.) : add_edge(u, t, -a[u], 0.);
    while (true) {
        for (int i=0; i<=t; ++i) d[i] = 1e39;
        memset(vis, 0, sizeof(vis)); d[s] = 0.; q[0] = s; a[s] = 1;
        int head = 0, tail = 1;
        while (head < tail) {
            int u = q[head++]; vis[u] = false;
            for (int i=0; i<cnt[u]; ++i) {
                const edge& ee = e[g[u][i]];
                if (ee.cap > ee.flow && d[ee.v] > d[u]+ee.cost) {
                    d[ee.v] = d[u]+ee.cost;
                    p[ee.v] = g[u][i];
                    a[ee.v] = min(a[u], ee.cap-ee.flow);
                    if (!vis[ee.v]) vis[q[tail++] = ee.v] = true;
                }
            }
        }
        if (d[t] >= 1e39) break;
        cc -= d[t];
        for (int u=t; u!=s; u=e[p[u]].u) e[p[u]].flow += a[t], e[p[u]^1].flow -= a[t];
    }
    return cc;
}

int main() {
    cout << fixed << setprecision(2);
    while (cin>>n && n) cout << "Case " << ++kase << ": " << max(solve(), 0.) << endl;
    return 0;
}

Aizu-2230 How to Create a Good Game

  国际游戏公司要加工一个游戏,该游戏的关卡是一个有向无环图,每两个关卡间都有若干任务。在通关所需最多任务不变的情况下,还能最多增添多少任务?
  这是典型的负权边必须取到的题目。不过这个题先要做一些分析处理才能转化成最小费用循环流:从终点关卡向起点关卡连一条边权为最长路长度的正权边再将原DAG权值取反,那么那些正权圈中的负权边就是应该增加权值的边,具体应该加多少,就是正权圈的权值。
  结合下面两个测试数据画图帮助理解。

样例1输入样例1输出样例2输入样例2输出
3 3
0 1 5
1 2 3
0 2 2
64 6
0 1 5
0 2 5
0 3 5
1 2 5
1 3 5
2 3 5
20

How to Create a Good Game
  画出图后就能理解负权边必须取到时,其处理方式的正确性了。样例1有一条流量为2的增广路 S → 2 → 0 → T S\rightarrow2\rightarrow0\rightarrow T S20T,最小费用为 2 × 8 = 16 2\times8=16 2×8=16,负权和为 − ( 5 + 3 + 2 ) = − 10 -(5+3+2)=-10 (5+3+2)=10,所以答案为6。样例2有一条流量为1的增广路 S → 2 → 3 → 0 → T S\rightarrow2\rightarrow3\rightarrow0\rightarrow T S230T、一条流量为1的增广路 S → 3 → 0 → 1 → T S\rightarrow3\rightarrow0\rightarrow1\rightarrow T S301T、一条流量为2的增广路 S → 3 → 0 → T S\rightarrow3\rightarrow0\rightarrow T S30T,最小费用为 ( − 5 + 15 ) + ( 15 − 5 ) + 2 × 15 = 50 (-5+15)+(15-5)+2\times15=50 (5+15)+(155)+2×15=50,负权和为 − 5 × 6 = − 30 -5\times 6=-30 5×6=30,所以答案为20。

#include <iostream>
#include <cstring>
using namespace std;

#define INF 0x7f7f7f7f
#define M 1002
#define N 102
struct edge {int u, v, cap, flow, cost;} e[(M+N)<<1];
int g[N][N], q[N*(M+N)<<1], cnt[N], a[N], d[N], p[N], c, m, n; bool vis[N];

void add_edge(int u, int v, int cap, int cc) {
    e[c] = {u, v, cap, 0, cc}; g[u][cnt[u]++] = c++; e[c] = {v, u, 0, 0, -cc}; g[v][cnt[v]++] = c++;
}

int mcmf(int s, int t, int f) {
    int cc = 0;
    while (f > 0) {
        memset(d, 127, sizeof(d)); memset(vis, 0, sizeof(vis)); d[s] = 0; q[0] = s; a[s] = f;
        int head = 0, tail = 1;
        while (head < tail) {
            int u = q[head++]; vis[u] = false;
            for (int i=0; i<cnt[u]; ++i) {
                const edge& ee = e[g[u][i]];
                if (ee.cap > ee.flow && d[ee.v] > d[u]+ee.cost) {
                    d[ee.v] = d[u]+ee.cost;
                    p[ee.v] = g[u][i];
                    a[ee.v] = min(a[u], ee.cap-ee.flow);
                    if (!vis[ee.v]) vis[q[tail++] = ee.v] = true;
                }
            }
        }
        if (d[t] >= INF) break;
        f -= a[t]; cc += d[t]*a[t];
        for (int u=t; u!=s; u=e[p[u]].u) e[p[u]].flow += a[t], e[p[u]^1].flow -= a[t];
    }
    return cc;
}

int solve() {
    int cc = 0, s = n, t = n+1, f = 0;
    memset(a, 0, sizeof(a)); memset(cnt, c=0, sizeof(cnt));
    while (m--) {
        int u, v, w; cin >> u >> v >> w; cc -= w; --a[u]; ++a[v]; add_edge(u, v, INF, -w);
    }
    for (int i=0; i<n; ++i) {
        if (a[i] > 0) f += a[i], add_edge(s, i, a[i], 0);
        else if (a[i] < 0) add_edge(i, t, -a[i], 0);
    }
    add_edge(n-1, 0, INF, -mcmf(0, n-1, 1));
    return cc + mcmf(s, t, f);
}

int main() {
    while (cin >> n >> m) cout << solve() << endl;
    return 0;
}

上下界循环费用流

  对于容量有上下界的循环流网络,结合上下界网络流的处理办法即可。

  UVa12092/LA2197 Paint the Roads
  某国有n个城市,用m条单向道路相连。你的任务是粉刷其中一些道路,使得被粉刷的道路组成一些没有公共边的回路,且每个城市恰好在其中的k条回路上。被粉刷的所有道路的总长度应尽量小。

#include <iostream>
#include <cstring>
using namespace std;

#define INF 0x7f7f7f7f
#define M 4100
#define N 82
struct edge {int u, v, cap, flow, cost;} e[M];
int g[N][N], q[M*N], a[N], d[N], p[N], cnt[N], c, m, n, k; bool vis[N];

void add_edge(int u, int v, int cap, int cc) {
    e[c] = {u, v, cap, 0, cc}; g[u][cnt[u]++] = c++; e[c] = {v, u, 0, 0, -cc}; g[v][cnt[v]++] = c++;
}

int solve() {
    cin >> n >> m >> k; memset(cnt, c = 0, sizeof(cnt));
    int s = n<<1, t = s+1, f = n*k, cc = 0;
    for (int i=0; i<n; ++i) add_edge(s, i+n, k, 0), add_edge(i, t, k, 0);
    while (m--) {
        int u, v, w; cin >> u >> v >> w; add_edge(u+n, v, 1, w);
    }
    while (f > 0) {
        memset(d, 0x7f, sizeof(d)); memset(vis, 0, sizeof(vis)); d[s] = 0; q[0] = s; a[s] = 1;
        int head = 0, tail = 1;
        while (head < tail) {
            int u = q[head++]; vis[u] = false;
            for (int i=0; i<cnt[u]; ++i) {
                const edge& ee = e[g[u][i]];
                if (ee.cap > ee.flow && d[ee.v] > d[u]+ee.cost) {
                    d[ee.v] = d[u]+ee.cost;
                    p[ee.v] = g[u][i];
                    a[ee.v] = min(a[u], ee.cap-ee.flow);
                    if (!vis[ee.v]) vis[q[tail++] = ee.v] = true;
                }
            }
        }
        if (d[t] >= INF) return -1;
        --f; cc += d[t];
        for (int u=t; u!=s; u=e[p[u]].u) e[p[u]].flow += a[t], e[p[u]^1].flow -= a[t];
    }
    return cc;
}

int main() {
    ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    int t; cin >> t;
    while (t--) cout << solve() << endl;
    return 0;
}

  UVa1104/LA5131 Chips Challenge
  很难想的神题,需要用到枚举,可以用上下界循环费用流的处理方法,利用补集思想可以优化建图。

参考博客

  最小费用循环流

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值