题目链接
题意
你带领一支团队检查一所新建的滑雪场地。滑雪场地可以用一个有向无环图表示,其中图的结点代表滑坡之间的交叉点,边代表滑坡,方向总是从高到低(否则就没有办法借助重力滑雪了)。
你的团队必须检查每一个滑坡。由于电梯还没有正式启用,你必须用直升机完成任务。每次使用直升机可以在滑雪场地的某个交叉点放置一人,让他顺着滑坡往下滑,沿途检查他所滑过的所有滑坡。每个滑坡可以被检查多次,但必须至少被检查一次。你现在要计算至少用几次直升机才能完成所有滑坡的检查工作。
分析
每个滑坡至少被检查一次,因此本题是容量有下界的网络流求最小流,按照上下界网络流中的有源有汇有容量上下界网络的最小流求解即可。
本题首先要添加源点s和汇点t并结合原始边信息建图,然后汇点向源点连无限边形成无源无汇的上下界网络,最后还要附加源S和汇T将其转化成有源有汇有容量上下界网络的最小流。求出最小流后得到了第一个答案,但是还要输出方案,遍历s的出边
(
s
,
u
i
)
(s,u_i)
(s,ui),若其流量
f
i
f_i
fi非0,则从
u
i
u_i
ui出发有
f
i
f_i
fi条检查路径:沿着流量
f
≥
0
f\ge0
f≥0(因为要加上下界1,
f
≥
0
f\ge0
f≥0意味着边上有流量)的路径走到t就可以输出一条路径(不需要输出t,并且路径上的每条边流量要减1),每找完一条路径将
f
i
f_i
fi也减1。
AC 代码
#include <iostream>
#include <cstring>
using namespace std;
#define M 10800
#define N 104
struct edge {int u, v, cap, flow;} e[M];
int g[N][N], q[N], p[N], d[N], cur[N], num[N+1], cnt[N], cs[N], ct[N], c, n; bool vis[N];
void add_edge(int u, int v, int cap) {
e[c] = {u, v, cap, 0}; g[u][cnt[u]++] = c++; e[c] = {v, u, 0, 0}; g[v][cnt[v]++] = c++;
}
bool bfs(int s, int t) {
memset(vis, 0, sizeof(vis)); q[0] = t; d[t] = 0; vis[t] = true;
int head = 0, tail = 1;
while (head < tail) {
int v = q[head++];
for (int i=0; i<cnt[v]; ++i) {
const edge& ee = e[g[v][i]^1];
if (!vis[ee.u] && ee.cap > ee.flow) vis[ee.u] = true, d[ee.u] = d[v] + 1, q[tail++] = ee.u;
}
}
return vis[s];
}
int max_flow(int s, int t, int n) {
int flow = 0, u = s;
for (int i=0; i<n; ++i) d[i] = n;
if (!bfs(s, t)) return 0;
memset(num, 0, sizeof(num)); memset(cur, 0, sizeof(cur));
for (int i=0; i<n; ++i) ++num[d[i]];
while (d[s] < n) {
if (u == t) {
int a = M;
for (int v=t; v!=s; v = e[p[v]].u) a = min(a, e[p[v]].cap - e[p[v]].flow);
for (int v=t; v!=s; v = e[p[v]].u) e[p[v]].flow += a, e[p[v]^1].flow -= a;
flow += a; u = s;
}
bool ok = false;
for (int i=cur[u]; i<cnt[u]; ++i) {
const edge& ee = e[g[u][i]];
if (ee.cap > ee.flow && d[u] == d[ee.v] + 1) {
ok = true; p[ee.v] = g[u][i]; cur[u] = i; u = ee.v;
break;
}
}
if (!ok) {
int m = n-1;
for (int i=0; i<cnt[u]; ++i) {
const edge& ee = e[g[u][i]];
if (ee.cap > ee.flow) m = min(m, d[ee.v]);
}
if (--num[d[u]] == 0) break;
++num[d[u] = m + 1]; cur[u] = 0;
if (u != s) u = e[p[u]].u;
}
}
return flow;
}
void solve() {
int s = 0, t = n+1, f = 0; memset(cnt, c = 0, sizeof(cnt)); memset(cs, 0, sizeof(cs)); memset(ct, 0, sizeof(ct));
for (int u=1; u<=n; ++u) {
int k, v; cin >> k;
if (!k) continue;
add_edge(s, u, M);
while (k--) cin >> v, ++f, ++cs[v], ++ct[u], add_edge(u, v, M);
}
int x = c; add_edge(t, s, M); s = t+1; t = s+1;
for (int i=0; i<s; ++i) {
if (cs[i]) add_edge(i, s-1, M), add_edge(s, i, cs[i]);
if (ct[i]) add_edge(i, t, ct[i]);
}
max_flow(s, t, t+1); f = e[x].flow; e[x].cap = e[x].flow = e[x^1].flow = 0;
cout << f - max_flow(s-1, 0, t+1) << endl;
for (int i=0; i<cnt[0]; ++i) {
edge &ee = e[g[0][i]];
if (ee.v > n || !ee.flow) continue;
while (ee.flow) {
t = 0; --ee.flow;
for (int u = ee.v; u != s-1;) {
p[t++] = u;
for (int j=0; j<cnt[u]; ++j) if (~g[u][j]&1) {
edge &eg = e[g[u][j]];
if (eg.v > 0 && eg.v < s && eg.flow >= 0) {
--eg.flow; u = eg.v; break;
}
}
}
for (int j=1; j<t; ++j) cout << p[j-1] << ' ';
cout << p[t-1] << endl;
}
}
}
int main() {
ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
while (cin >> n) solve();
return 0;
}