数学的1000+篇文章总结
本文收集和总结了有关数学的1000+篇文章,由于篇幅有限只能总结近期的内容,想了解更多内容可以访问:http://www.ai2news.com/, 其分享了有关AI的论文、文章、图书。
query
- 第13章 爱因斯坦:量子物理与抽象数学
- 附录1 数学年表
- 第2章 线性代数
- 数学符号
- 12.3 MATLAB在投资收益与风险问题中的应用
- 本章小结
- 9.3 还原真实场景
- 6.4 如何渡河时间最短 & 6.5 如何渡河位移最小
- 扉页 & 版权信息
- 02 数学课堂教学的问题 新旧教学模式之争
- 9.5 聊天机器人的程序实现 & 9.5.1 准备数据
- 3.7.4 数据预测
- 版权信息 & 序言
- 乙辑 数学家的故事
- 13 了不起的圆周率
- 目录 & 01 集合的艺术
- 17.3.4 留得青山在
- 8.3 数据来源
- 5.4 小结
- 术语及符号说明
- 附录
- 本书的使用说明 & Excel 示例文件的下载
- 第7章 构造性
- 译者序
- 8.7 数组相等
- 8.5 数组近似相等
- 5.7 本章要点
- 13.2 素数测试
- 2.8.2 平均数估计 & 2.8.3 比例估计
- 3.3.3 估计得分高于或低于任意分数的几率 & 3.3.4 估计得分介于任意两个分数之间的几率
- 全国高中数学联赛模拟题(四)
- 第四讲 递归数列
- 3.5 可视化
- 第2章 矩阵及其操作
- 第8章 代数方程
- 第7章 函数
- 第22章 基本数据分析应用
- 第6章 数据排序与筛选
- 23.11 NoSQL & 23.12 延伸学习
- 12.4 延伸学习
- 第4章 逻辑函数
- 第11章 Web函数与宏表函数
- 第19章 数据表处理技巧
- 第一篇 函数导读
- 第13章 兼容性函数
- 6.1 平均值计算函数
- 第八讲 幂函数、指数函数与对数函数
- 第十一讲 任意角的三角函数
- 第八章 余力学文
- 第12章 指数基金王国
- 第四章 指数与对数
- 第三章 三角函数的图像与性质
- 插曲 逻辑学的乐趣
- 第一部分 莱布尼茨之梦 & 从前的数学故事
- 5~6岁,数学思维能力发展导图
- 综合训练
- 第11章 音乐:声响的数学之旅
- 第7章 数字绘画
- 第6章 数据分析
- 第7章 符号数学计算
- 9.8 相关系数
- 第10章 财务函数
- 第7章 数列与数学归纳法
- 5.7 查找与引用函数
- 5.8 文本函数
- 第七节 小学体育与健康课教学
- 第三节 小学数学教学
- 第1章 深度学习简介
- 3.6 母函数
- 第3章 组合数学
- 机器学习
- 个人数据和隐私 & 个人数据
- 第二讲 函数问题的解题方法
- 第一讲 集合与简易逻辑问题的解题方法
- 总目录 & 心理学与认知科学哲学 & 书名页 & 目录
- 第十章 科学哲学的历史——从科学逻辑到科学哲学:1930—1960年的欧洲与美国
- 第19章 财务函数
- 第16章 数学与三角函数
- 第10章 数学形态学及应用
- 第三部分 数据驱动的智慧城市
- 利用交通数据规划城市
- 第七章 自然哲学与实证科学
- 第五章 科学概念
- 第11章 深度强化学习
- 第3章 机器学习概要
- 4.2 AdventureWorks 2008示例数据库的结构 & 4.2.1 AdventureWorks 2008数据库的数据类型
- 28.5 数据维护操作的应用 & 28.5.1 添加数据的实现
- 8-5-2 内联函数
- 7-2-5 数组参数
- 第3章 代数运算(初中水平)
- 第四章 教学情境模拟之试讲篇
- 第一节 教学目标
- 数学家与政治家
- 吴文俊:数学是笨人学的
- 10.2 大整数运算
- 15.5 水仙花数
- 12.6 数学与Hash函数 & 12.6.1 数学运算函数
- 14.2 MovieLens 1M数据集
- 5.2.5 算术和数据对齐
- 5.5.2 PostgreSQL数据库的备份方法
- 7.5.3 Neo4j图形数据库的存储结构
- 11.4 基于膨胀和腐蚀的数学形态学重建
- 第11章 数学形态学的应用
- 第17章 学生成绩管理系统
- 第10章 解决数学问题
- 第2章 DEBUG相关函数库:assert.h
- 第3章 BIOS相关函数库:bios.h
- Chapter 6 使用函数查找所需数据
- Chapter 7 使用函数处理财务数据
- 第13章 函数
- 4.2.6 集合 & 4.3 NumPy数据结构
- 9.3 积分 & 9.3.1 数值积分 & 9.3.2 通过模拟求取积分
- 3-20 观念经济学原理及其现实意义
- 3-3 数学思维·数字技术·数字经济——我们正在进入需要数学语言和数学思维才能认知经济与生活的时
- 第六章 学习环境设计
- 第4章 数学之趣——数学游戏的乐趣
- 2.9 机器学习的目标函数
- 第五部分 反向强化学习
- 习题41 学习面向对象术语
- 对称
- 第6章 整数6
- 第2章 趣味数学问题
- 习题3 数字和数学计算
- 11.1 地图的数据
- 第4章 选择集与数据
- 第4章 分析离散数据的数学
- 前言 它们在数百年的黑暗中闪耀,用数学照亮了人类的历程
- 后记 数学的本质就在于它的自由
- 04 最受欢迎的函数与公式 & 4.1 一起来学习函数与公式
- 8.2.2 星座学
- 数学狂人李斯罗庚
- 第4章 数学与三角函数使用技巧
- 4.2.6 把函数作为函数的参数
- 10.3.2 数学期望
- 第7章 假设检验
- 第4章 随机变量的数字特征
- 第 5 章 深度学习用于计算机视觉
- 第 6 章 深度学习用于文本和序列
- 第18章 统计学函数应用
- 第7章 数学函数运算
- 第二篇 数学基础
- 第1章 机器学习介绍 & 1.1 什么是机器学习
- 1.4 机器学习应用开发的典型步骤 & 1.4.1 数据采集和标记
- 附录四:没有收入本书正传的清代女科学家 & 附录五:有关清代自然科学的人与事
- 青年江熹的数学研究
- 第4章 数学计算函数实战应用技巧
- 第9章 数据库函数实战应用技巧
- 第11章 分布式机器学习:集体力量
- 第3章 数学基础:恼人但又不可或缺的知识
- 第三章 数学和实在
- 物理学类
- 第2章 行动学习催化:概述
- 第5章 组织学习顾问:深化行动学习
- 第10章 数学概念与方法
- 第2章 数学基础 & 2.1 基本计数方法
- 第二篇 PHP数据处理 & 第4章 PHP对数组的处理
- 第9章 PHP中的数学运算
- 8.3.1 数学函数
- 第2章 手指灵活,数学也强
- 第3章 跳跳舞,学数学
- 高等数学中的场论基本物理量详解
- “单因素试验方差分析”教学设计
- 测一测 你知道这些隐藏在文学、历史和现实生活中的数学真相吗?
- 21 统计学的圈套
- 12.6 数学
- 本书常见数学符号定义
- 附录 不只是数学
- 第1章 机器学习引言 & 1.1 什么是机器学习
- 2.4 Tobit回归:评估学生的学术能力
- 7.2 操作MySQL数据库
- 3.3 函数对象
- 二 触摸数学这只大象
- 数学计算
- 第 3 章 有效地制造与管理科学数据 & 3.1 数据的基本概念
- 3.2.2 数据库 & 3.3 常见的数据操作
- 第8章 排序学习
- 第9章 集成学习 & 9.1 集成学习简介
- 22.3.3 数学表达式
- 11.7 执行数学运算 & 11.7.1 expr命令
- 3.5.1 数学函数与常量
- 3.6 复数的数学运算
- 1.8.3 数学相关的函数
- 统计思维:程序员数学之概率统计 & 版权信息
- 第5章 概率
- 第1章 R语言知识体系和数学函数
- 7.4 数学库
- C.1 标准库中的数学和统计
- C.1.1 数学函数
- 数学之美
- 古代数学家
- 5.5 生活中的数学
- 1.4 循环的数学应用
- 3.6 基本数学运算
- 八、示波器的数学函数
- 第2章 NumPy-快速处理数据
- 第5章 文本数据清洗
- 5.3.1 数学基础
- 11.6 使用公开的数据集 & 11.7 数据科学领域需要的数学知识
- 6.8.5 反向传播算法 & 6.8.6 word2vec背后的数学理论
- 9.4.3 理解人工神经网络中的数学概念
- 第 4 章 斐波那契数列和生成函数
- 第 9 章 泰勒展开和巴塞尔问题
- 5.2 数字的趣味——数学函数
- 第6章 量化工具——数学
- 3.7.3 数学类
- 6.6 微分
- 第 6 章 游戏开发的数学和物理学基础理论 & 6.1 比例、一次函数及直线方程
- 第15章 3D数学与3D图形学
- 12.3.2 使用数值型数据
- 13.1.2 函数的参数传递 & 13.1.3 函数中变量的作用域和返回值
- 3.1.1 机器人数学建模
- 第7章 数据结构问题
- 第6章 数学问题
- 第2章 简单数据结构
- 第9章 信息学奥赛试题精解
- 内容简介 & 专家推荐
- 译者序
- 5.4.9 数学函数 & 5.4.10 作用域
- 第2章 数学中的密码——无处不在的φ
- 3.3 F数列的数学应用
- 18.4 数学范畴
- 6.1 什么是函数式编程 & 6.1.1 数学中的函数
- 8.4 参数化类型关系
- 2.4.2 构造函数
- 第3章 数学算术:计算器
- 13.2 向函数传递参数
- 第12章 游戏中的数学和物理
- 12.1 游戏中的数学
- 一、数学的崇高者
- 第 1 章 为什么需要清洗数据
- 第 11 章 机器学习
- 16.10 数学库
- 16.9 数学库
- 第1章 机器学习的基础
- 第7章 预测的技术与哲学
- 第3章 数字和变量——用Python做数学运算
- 38参考文献
- 12第十二章 回归分析
- 5.3 处理的技巧 TRICKS OF THE TRADE
- 1 递归问题 RECURRENT PROBLEMS
- 第9课 集成学习“笑傲江湖”
- 第1课 机器学习快速上手路径——唯有实战
- 第一篇 数学与字符串相关函数
- 第1章 数学函数
- 第13章 数学函数
- 附录B Mahout数学基础
- 第7章 矩阵数学及贝塞尔曲线 & 7.1 矩阵数学 & 7.1.1 矩阵乘法
- 24.29 pow()函数
- 第23章 寻找质数
- 第14章 营销数学
- 第一部分 Python及应用数学基础
- 第1章 机器学习基础
- 第10章 常用数学工具类
- 第九章 哲学
- 第十章 科学与数学
- 二 数学思维还是直觉思维?
- 9.2.3 Java的数学函数标准库
- 9.2 数字和数学运算 & 9.2.1 Java表示整数类型的方式
- 前言
- 1.5 线性函数的图像
- 1.9 数学运算符
- 第4章 学习Shader所需的数学基础
- 1.5 独立性
- 第10章 大数据与精准预测
- 第9章 肠卜术与科学研究
- 第22章 数学函数
- 懂数学的蝉
- 第16章 数学
- 第19章 工具库 & 19.1 数学库
- 第9章 常用的数学和统计函数
- 第19章 应用数学与经济管理
- 6.2.1 状态的数学模型与状态树
- 23.2.1 棋盘与棋子的数学模型
- 3.9 数学中的类似思想
- 第 4 章 数学排版
- 第一章 挑战你的数学思维
- 单元六 数学电子技术基础
- 第 2 章 机器学习概述 & 2.1 什么是机器学习 & 2.1.1 有监督学习 & 2.1.2 无监督学习
- 1.3 机器学习中的风险 & 1.3.1 数据的不稳定性 & 1.3.2 欠拟合
- 1.9 数学运算符
- 5.2 数值和字符处理函数 & 5.2.1 数学函数
- 3.4.6 数学标注 & 3.5 图形的组合
- 第9章 数学与数字
- 第3章 数据科学家的类型
- 版权声明 & 内容提要
- 4.4 使用头文件实现特殊数学运算
- 第14章 数学运算
- 第08章 数学对象
- 第2章 科学计算器 & 2.1 本章目标 & 2.2 数学运算符和向量
- 12.6 访问数据库
- 第四章 神奇的图形
- 第三章 有趣的算术
- 第2章 投资收益率中的数学
- 附录A 快速回顾数学归纳法
- 9.1.1 导入数据
- 13.2 一次简单的Twitter REST API数据拉取
- 13.3 向函数传递参数
- 第 13 章 函数 & 13.1 函数——积木
- 使用代码示例 & 软件安装注意事项
- 第 2 章 NumPy入门
- 前言
- 第2章 神奇的素数
- 1.3 JavaScript自带函数(数学、数组以及字符串函数)
- 第20章 应用数学
- 17.2.4 数学运算库
- 第12章 数学捷径
- 第1章 新手上路
- 第4章 机器学习
- 第 6 章 使用series和frame
- 第 9 章 概率与统计
- 网络世界充斥着数学的逻辑
- 第9章 数学运算
- 第3章 数学运算
- 第18章 应用数学
- 第一章 大数据概述
- 第2章 快速介绍机器学习 & 什么是机器学习 & 有监督学习 & 无监督学习 & 强化学习
- 6.5.6 指数平滑法
- 13.3 如何成为出色的建模者 & 13.4 数据泄漏
- 第4章 基本的数学知识
- 第11章 树上无预言,真的吗
- 第1章 3D游戏开发的数学基础
- 第7章 游戏背后的数学与物理
- 环境准备
- 实例6 利率问题
- 《数学大王》的那些审稿老师们
- 3.2 GAN的数学原理
- 3.2.2 生成对抗网络的数学推导
- 第4章 学习Shader所需的数学基础 & 4.1 背景:农场游戏
- 第4章 Julia进阶
- 第12章 图分析
- 我们正在教孩子们错误的数学
- 第5章 Visual C++调用MATLAB的C/C++数学函数库
- 3.9 数学中的类似思想 & 3.9.1 积分
- 19.人类学与和平研究
- 1.导论:国际人类学与民族学联合会及其 专业委员会
- 第 27 章 C99 对数学计算的新增支持
- 作家们笔下的花絮003号:小格子——我的数学小伙伴
- 可怕的科学
- 4 疯狂填词 & 5 简单的数学处理
- 19.10 数据块读写函数:fread()和fwrite()
- 11.1.4 如何将数组a赋给数组b
- 第6章 汽车数据可视化(基于Python)
- 第5章 就业数据可视化探索
- 5.2 数据清洗 & 5.2.1 重复值处理
- 1.5 预测性数据挖掘算法示例 & 1.5.1 决策树 & 1.5.2 KNN算法
- 第2章 运营商大数据架构 & 2.3 平台发展趋势
- 第3章 运营商大数据业务 & 3.1.3 MSS(市场运维支撑) & 3.2 小结
- 版权信息 & 序言 学习数学前你需要了解的事
- 第5章 数学、物理与动画 & 5.1 直线移动
- 数学、物理、计算机专家解析市场模型
- 1.8 机器学习角色与过程 & 1.8.1 角色 & 1.8.2 过程
- 1.6 机器学习的应用 & 1.7 机器学习中的实际问题
- 第6章 机器学习系统应用(一):结构数据挖掘
- 2.4 数据处理
- 第 1 章 开始二人之旅
- 第 2 章 学习回归——基于广告费预测点击量
- 第二章 激活数据学:基于块数据理论的解决方案
- 第六章 热点减量化:智能筛选
- 附录A 对话吴军:每个人都要有数学思维
- 第1章 为什么学好数学对洞察商业本质很重要
- 10.3 第三步:数据清洗 & 10.3.1 创建数据表
- 2.3.2 数据类型间的相互转换
- 第1章 数据分析与数据挖掘的力量
- 连接数据的可能性
- 第8章 实时的可移动数据
- 第3章 XNA数学库简介
- 参考答案
- 扉页
- 四、《资本论》:透过现代数学的演绎分析
- 11.8 参考文献 & 附录 数学基础与高级TensorFlow
- 10.8.2 处理数据 & 10.8.3 学习词嵌入
- 6.2.3 “:=”——急速修改数值
- 第9章 星巴克商业案例分析 & 9.2 数据描述性统计量分析
- 第1章 Python在数据科学中的应用
- 第5章 数据挖掘——海底捞针
- 日课082 | 《穿越平行宇宙》4:只问数学,无问西东
- 日课091 | 对冲风险的数学原理
- 7.2 检查数据及其属性 & 7.2.1 确定有无数据头 & 7.2.2 检查所有数据
- 第十章 物理和数学:自然与认知的边界
- 2.2.2 读写数组
- 2.6.2 处理二维数组的元素
- 第 7 章 更多数据挖掘和机器学习技术
- 第 8 章 处理真实数据
- 5.3.1 高等数学+:基于Shor分解大数质因子量子算法
- 3.3.4 量子世界中,波函数到底是数学描述还是实体
- 大数据正在进入教育的方方面面 & 有别于“讲台上的贤能者”的传统教育
- 4 后果 & 正视大数据的黑暗面
- 15-1-1 fopen()函数与fclose()函数
- 11-2 函数的使用 & 11-2-1 函数原型声明简介
- 第2章 数学与机器学习基础 & 2.1 矩阵 & 2.1.1 矩阵的形式
- 第1章 赋予计算机学习数据的能力
- 第3章 使用scikit-learn实现机器学习分类算法
- 第2章 汽车数据的可视化分析(R)
- 函数性能测试和比较
- 五、小数据与虚拟现实
- 二、数据本无大小
- 第十五节 中学音乐教学
- 第八节 中学生物教学
- 第1章 统计学是大数据时代最炙手可热的学问
- 第3章 统计数字会撒谎
- 第7章 大数据分析学
- 第3章 数据挖掘过程
- 3.8.1 使用属性 & 3.8.2 使用数学表达式 & 3.8.3 使用宏
- 10.5.2 附加数据源
- 6.6 数值RDD的操作
- 第二章 大数据为什么不一般?
- 第四章 大数据分析法
- 2.2.4 多数据源的知识融合
- 1.2.2 激活函数 & 1.3 参数学习 & 1.3.1 模型的评价
- 第七章 大学及其作用
- 第四章 技能教育及其与科学和文学的关系
- 12.3 使用Numexpr加速数值表达式
- 第9章 集成学习和降维
- 数据盲点
- 管,保护好存储数据
- 第二节 理财支招:科学供房省钱又省心 & ◎稳增长还是调控不放松?两难的选择题
- 附录1 简单认识数据和理财方法 & 第一节 学会看数据:同比与环比 & ◎难分彼此的孪生兄弟
- 写在前面:学会数据化思考
- 4.3.4 参数调试
- 3.1.3 PASCAL数据集
- 第5章 KNN分类算法
- 第3章 机器学习概述
- 附录B 常用函数
- 第8章 应用数据库
- 4.2.2 用户产生的数据
- 5.1.3 大数据分析平台的关键技术
- 第16章 大数据机器学习库
- 第3章 非关系型数据的收集
- 第6章 数据分析——聚类
- 第11章 用机器学习预测事件
- 5.5.3 客户成功经理的数据看板
- 5.2.3 产品数据分析流程
- 为何需要数据科学
- 附录 A 无监督学习算法概览 & 附录 B 监督学习算法概览 & 附录 C 调节参数列表 & 附录 D 更多评价指标
- 9.4.1 Spark处理KDD99数据集 & 9.4.2 读取数据集
- 2.3 随机学习 & 2.3.1 批处理梯度下降
- 3.5 标识重复个案
- 12.2 肯德尔等级相关分析
- 13.4 Redis的数据类型 & 13.4.1 String类型
- 第16章 基于电商产品的大数据业务分析系统实战 & 16.1 项目背景、实现目标和项目需求
- 后记 & 附录 安装数据挖掘套件
- 上篇 做数据分析之前要先学会做淘宝
- 大数据分析统计应用丛书编委会 & 总序
- 第10章 大数据案例分析
- 3.1.2 创建DataFrame数据
- 9.3.4 数据探索
- 第6章 数据库的保护
- 第52节 转债成功的投资者要具备的数学逻辑
- 10.1.1 建议 1:学好使用工具
- 10.3 快速回顾所学内容
- 5.10.1 数组的堆化
- 6.6.2 栈的数组实现
- 第2章 步入数据之门
- 第18章 数据解读与数据的价值
- 第二部分 大数据科学的工作流和工具
- 第 9 章 机器学习
- 第15章 数据科学的阴暗面
- 第9章 当数据与现实不匹配
- 9.3 NoSQL数据库
- 第3章 Julia函数 & 3.1 创建函数
- 第1章 向量、矩阵和数组 & 1.0 简介 & 1.1 创建一个向量 & 1.2 创建一个矩阵
- 1.21 生成随机数
- 2.9 使用导数寻求函数的最小值
- 2.3.1 使用push方法 & 2.3.2 插入元素到数组首位
- 11.4 函数式编程简介
- 第1章 概率统计与应用数学的基础知识 & 1.1 概率的定义
- 第5章 会员数据化运营 & 5.1 会员数据化运营概述
- 7.3.2 流量数据处理
- 第1章 大数据、数据挖掘与智慧运营综述
- 4.3 Kafka大数据消息总线
- 3.2 实时数据收集
- 1.6 数据科学:一个迭代过程
- 1.1 数据科学 & 1.2 数据科学家:21世纪最炫酷的职业
- 第20章 连接数据
- 第16章 美化真实世界中的数据
- 第4章 在Unity中使用图形学知识 & 4.1 3D数学基本知识在游戏中的应用
- 第3章 VBA常用函数和语句 & 第1节 数学函数 & 疑难44 如何用VBA进行四舍五入
- 第17章 多源数据学习
- 七、重要常识之“贵金属市场可以寄予多大的数学期望”
- 前言
- 第9章 大数据挖掘践行篇
- 04 医疗与健康:借助大数据量化自我
- 第40章 数字时代的科学
- 第2章 指南针和数字
- 8.1.6 PL/Python函数中的数据共享
- 11.1.2 地理空间数据应用与分析中的挑战
- 第2章 数据库的安装(教学视频:26分钟)
- 第10章 函数与分组查询数据(教学视频:42分钟)
- 第4章 数据可视化库(Matplotlib)
- 第3章 数据分析处理库(Pandas)
- 第3章 数据处理
- 第12章 深山居士佛光潜——遮遮掩掩的WinHex API函数
- 第8章 神功大展现本元——WinHex与数据恢复
- 第一篇 基础知识 & 第1章 数据结构概述
- 3.2.2 准备数据
- 第三部分 深度学习实践
- 第8章 自动化深度学习概述 & 8.1 深度学习vs自动化深度学习 & 8.2 什么是NAS
- 14.1.3 深入了解元学习
- 二、序数词
- 第4章 动理学
- 第2章 运动学
- 第四章 列宁和共产主义学说
- 第三节 超越革命代数学和预言政治学
- 第1章 宏观经济学科学
- 第2章 数据探索,招招都是利器
- 第8章 数据抓取
- 更新传统学科的知识内容,建构新交叉学科
- 第9章 游戏设计中的算法 & 9.1 游戏中的数学与物理算法
- 目录 & “典策时光”学术委员会(以姓氏拼音排序) & 扉页
- 人人都来学国学 & 序
- 第 3 章 数组
- 前言
- 序
- 第2章 大数据探索及预处理
- 第2章 Python结构化数据提取、转换和加载
- 第7章 大数据分析
- 第10章 菜品分类——数据分组/数据透视表
- 第4章 准备食材——获取数据源
- 读《一个哲学工作者的成长》
- 第10章 UDP协议数据分析
- A.5 简易数据文件分析工具rawshark
- 10.4 数据预处理
- 2.5 数据预处理 & 2.5.1 数据清理
- NO.20 如何用数据驱动运营
- NO.22 如何基于业务实现用户行为数据产品化
- 第6章 特殊类型数组与通用函数
- 第2章 高级索引和数组概念
- 下篇 跟着实战学做数据分析
- 第7章 迁移学习
- 9.4 爬取书籍信息 & 9.5 爬取GitHub上项目被收藏的次数
- 第7章 网络爬取涉及的管理和法律问题 & 7.1 数据科学过程
- 1.2.1 优点一:入门简单,操作易学
- 7.4.3 WORKDAY函数
- 四、现实主义法学
- 第三节 权利的价值哲学
- 第2章 分解数据,找到“问题的关键”
- 序章 我在日产学到了什么
- 第11章 图像形态学 & 11.1 像素集合操作
- 14.3 笔画参数
- 5.4 遗传学异常的预测
- 第2章 预测海藻数量
- 第一部分 学习众生相
- 引言 给所有尽心尽力的父母、鞠躬尽瘁的教育工作者和艰难摸索学习方法的孩子
- 第7章 集成学习和随机森林
- 机器学习系统的种类
- 第2章 数据分析生命周期
- 第1章 大数据分析介绍
- 第6章 数联网的几个问题
- 第2章 数联网基础
- 第12章 学习力:借方法论加速
- 第15章 软实力:靠心理学打造
- 第2章 大数据经济带来的变革
- 内容提要 & 前言|经济学变革的突破点
- 3.7 集成学习
- 第9章 深度学习
- 预测营销不是心理学,而是行为科学
- 大数据分析,从数据清理开始
- 第4章 你好,数据新闻学
- 第7章 机器学习:关于机器学习的深度学习
- 第1章 数据挖掘概述
- 5.1.3 信息流广告数据分析痛点
- 第2章 广告数据分析中的统计学原理 & 2.1 抽样:总体、样本和误差
- 第8章 脑部医学影像诊断
- 第一章 大数投资概述
- 第五章 大数投资的交易准则
- 3.5 数据分析的第二板“斧”:假设检验
- 3.2 数据的处理
- 第7章 数据技术团队组建和发展
- 第12章 大数据的关键模型
- 第11章 迎来崭新的数据时代
- 第6章 云数据库
- 第15章 大数据的其他应用
- 2.2 数据中台必备的4个核心能力
- 第3章 数据中台建设与架构 & 3.1 持续让数据用起来的价值框架
- 第7章 极值理论﹑分位数估计与VaR
- 2.8 指数平滑
- 第5章 好好安排数据
- 第4章 数据的世界
- Ⅰ.生物医学伦理学原理
- 9.临床技术运用伦理学
- 第12章 如何有效学习
- 第6章 计算数据透视表中的数据
- 第5章 理论 使用推测统计学
- 序章 统计学是什么
- 第5章 Python数据处理工具——Pandas
- 第4章 Python数值计算工具——Numpy
- 第16章 强化学习
- 第1章 机器学习概览
- 4.5 智慧城市大数据决策分析
- 第3章 智慧城市中的大数据资源
- 诗学
- 第5章 深度学习之计算机视觉
- 第1章 PyTorch与深度学习
- 4.5 猫和老鼠的数据攻防战
- 2.6 发现数据中蕴含的地理信息 & 2.7 用数据解决客户的痛点
- 第1章 数据,另一种视角 & 1.1 数据之下的中国 & 1.1.1 2015年,中国人是怎么花钱的
- 第3章 数据之于生活
- 7.8 流量数据化运营分析模型 & 7.8.1 流量波动检测
- 2.2.4 从非关系型数据库MongoDB读取运营数据
- 我们,你们,他们:群际关系心理学揭秘(原书第2版)
- 第12章 积极心理学的未来
- 7.2 保存数据
- 7.4 内存数据集处理
- 第4章 统计数据和布局
- 第11章 跨媒体数据可视化
- 非时空数据篇
- 第2章 计数函数
- 第1章 求和函数
- 2.7 复数和复变函数运算
- 12.5 离散控制系统数学模型
- 十二 清初学海波澜余录
- 十四 清代学者整理旧学之总成绩(二)——校注古籍 辨伪书 辑佚书
- 3.7 调整超参数
- 9.2 学习OpenAI Gym
- 11.2 学习使用简单GAN虚构MNIST图像
- 第9章 强化学习 & 9.1 引言
- 第二学期
- 第一学期
- 《清代学术概论》导读
- 三 〔清学的出发点〕
- 第7章 科学计算工具包SciPy
- 第6章 结构化数据分析工具Pandas
- 第5章 常用数据分析工具
- 第8章 机器学习组合算法
- CHAPTER 03 必须掌握的函数和公式基本技能
- CHAPTER 08 查找引用函数及其实际应用
- 10.1.1 使用Web API获取数据
- 11.6.1 获取数据
- 第11章 流数据的应用
- 第4章 流分析中的数据流程管理
- 第5章 分析课三——强大的函数
- 第2章 准备课——数据处理及挖掘
- 13.2 解析半结构化文本数据
- 7.2 关系型数据库
- 第10章 在俱乐部和兴趣小组中学习,找到你的使命,以及特里差点儿烧毁学校的经历
- 第16章 从“不得不学”到“有机会学”
- 二、“立太极”的哲学学说
- 二、社会政治学说
- 英国学生文学读本 6
- 英国学生文学读本 2
- 第4章 高阶函数
- 第2章 一等函数与Applicative编程
- 第三章 论作为实证科学的文字学
- 挖掘编 & 5 利用Python进行数据挖掘
- 大数据
- 5.4 matrix与线性代数 & 5.4.1 创建NumPy矩阵
- 7.3 数据准备 & 7.3.1 缺失值处理
- 1.4 数据的离散程度分析
- 1.3 数据集中趋势分析
- 惠普自我学习
- 机器学习的艺术和科学
- 第3章 函数
- 2.2 感知机学习策略 & 2.2.1 数据集的线性可分性 & 2.2.2 感知机学习策略
- 7.3.3 常用核函数
- 第9章 数据拟合案例
- 第11章 可视化数据挖掘工具Rattle
- 第2章 数据对象与数据读写
- 第7章 数据赋能和数据维护
- 第6章 数据生命周期管理的规划和设计
- 第11章 数据质量管理
- 第4章 数据伦理
- 第1章 向分心专家学习
- 第2章 学习的神经机制
- 8.5 数据转换
- 1.6 关于互联网和电子商务的最新数据 & 第2章 数据挖掘概述
- 第三部分 数据变现的四大场景
- 推荐序三 学习如何学习的能力
- 第三章 史学略说
- 第五章 结论——国学之进步
- 7.4 聚合函数
- 1.2.3 数据库访问技术
- N 规范Norms——培养学习“游戏规则”
- K 知识与创新Knowledge——论述知识学习中的高效与创新
- 第五章 眼见真的为实吗?我们信仰统计学
- 第九章 拨开数据的迷雾:总结
- 第四章 大学求学
- 第七章 学术会议与大会
- 第十九章 今日心理学
- 第十四章 知觉心理学家
- 鬼同学
- 第11章 常用的内置模块 & 11.1 数学计算模块——math & 11.2 日期时间模块——datetime & 11.2.1 datetime类
- 3.3.2 美学参数映射
- 8.4 Spark数据科学在OpenShift上的实现
- 第3章 学习参数
- 9.3 学习Q值函数
- 第2章 数据引导可视化设计
- 第1章 你真的理解数据了吗
- 6.5 数字教育:个性化教育、自适应学习与教育大数据互联互通
- 1.2 大数据汹涌来袭
- 7.2 大数据的“阿喀琉斯之踵”
- 第3章 典型大数据源及其价值
- 第1章 什么是大数据,大数据为什么重要
- 第1章 初识强化学习
- 5.2.2 Q学习
- 第二篇 数据治理实施
- 第13章 数据安全管理
- 天羽总经理的统计学指南 & 本章出现的R代码
- 走近“数据分析”——对于初学者而言本书具有的三大优势
- 9.5 偏微分方程的其他函数
- 5.1 数据排序
- 数字货币家族成员
- 数字货币风险
- 数字游戏
- 第10章 文本与网络数据挖掘
- 第一篇 强化学习基础
- 2.4 大数据的基准测试
- 第4章 大数据应用的性能测评技术
- 第6章 网站数据整合的方法 & 6.1 网站数据整合的意义
- 第10章 数据驱动下的数字营销应用 & 10.1 数字营销的概念和范围 & 10.2 数字营销发展的三个阶段
- 第6章 化学反应速率和化学平衡
- 第5章 化学热力学基础
- 第1章 行动学习的基本假设
- 第7章 导入行动学习的经验
- 3.3 HBase——分布式数据库
- 第2章 数据规范化
- 第5章 关系型数据库
- 第6章 其他数据新闻制作工具 & 6.1 图表绘制工具库ECharts
- 第2章 获取数据
- 15 机器学习:范型与架构
- 16 机器学习:分布式算法
- 区域分隔的数字化方法
- 第一章 数据——来源与收集
- 中篇·数码照片基本处理技法
- 第6章 如汤沃雪:数码图像基础
- 第六讲 中国政治哲学的变迁
- 上编 政治哲学的基本概念 & 第一讲 政治学、政治科学与政治哲学
- 2 学习的本质:知识链和记忆结
- 给职场人士的学习策略
- 离开瑟谷学校后的正式学习
- 心理学 & 心理学的范畴和方法
- 课程与教学
- 第五章 总体参数的估计
- 金毓黻与南北学风的分合
- “中国哲学”探源
- 2.5 数据库访问
- 2.5.2 主要的数据库服务资源供给
- 9.4.2 主要的网络参数
- 3.利用大数据控制企业供应链
- 1.商家营销:利用大数据快速抢占市场
- 1.7 存储并检索关系数据库
- 1.14 将特征规范化、标准化 & 1.15 分级数据
- 第二十六章 哲学的人生
- 第三章
认知科学 - 第8章 ◄数据管理►
- 第三部分 HAWQ数据挖掘
- 2.1 换个思路来数鸡
- 第1章 “数羊”与数据化运营
- 第2章 深度学习和计算机视觉中的基础数学知识
- 第12章 度量学习
- 二、关于“学美留学”
- 三、“学美留学”申请美国大学辉煌成果
- 夏商周考古学科前沿研究报告(2010—2012)
- 先秦史学科前沿研究报告(2010—2012)
- 神学院学生
- 八 帝国时期的哲学学派
- 七 希腊化时代的学校
- 第1章 知己知彼,百战不殆——什么是数据分析
- 第4章 抽丝剥茧,刨根问底——数据处理
- 8.5 数据字典表的特殊维护
- 8.3 数据字典表
- 第5章 医学图像融合 & 5.1 医学图像特点
- 第6章 基于仿生算法的医学图像融合
- 第五部分 深度学习 & 17 AutoEncoder
- 0.2.3 监督学习算法
- 第二部分 深度学习的演进
- 01 机器学习的崛起
- 第三十章 陈柱子的哲学
- 3.4 从数据中提取有用特征 & 3.4.1 数值特征
- 2.2 机器学习系统商业用例
- 第四章 社会数字指南:集体智慧的科学与艺术
- 调整并培养个人学习网络
- 第5章 创造理想的学习环境
- 第4章 学会4种超级学习方法
- 第1章 数据库的基本概念
- 第6章 索引与数据完整性
- 结语 开启属于你的个人大数据管理
- 第一部分 从数据化运营到运营数据
- 3 数据的存取与清洗
- 4 数据的分析及可视化
- 一 学论
- 1.4 Python语言基础要素 & 1.4.1 数值
- 第 7 章 描述性统计与建模 & 7.1 数据集 & 7.1.1 葡萄酒质量
- 4.7 解析JSON数据
- 8.1 概括数据
- 第11章 金融和经济数据应用
- 数据转换
- 国际音标符号全表 & 语言学惯用符号表 & 语言学大事记
- 序 言 & 与生活息息相关的哲学问题 & 哲学是什么
- 第1章 全面认识数据图表
- 第6章 科学地决策
- 推荐序一 拥抱“大数据时代”
- 第一部分 大数据时代的思维变革
- 第二节 数额
- 第二节 单数犯罪
- 第9章 以KDJ范例程序学习GUI编程
- 第十六章 术语数据库与计算术语学
- 第十章 语料库语言学
- 1.1.2 传统机器学习与深度学习的对比
- 1.3 本书涉及的深度学习框架 & 1.4 优化深度学习的方法
- 2.1.3 自动搜集数据
- 4.3 延续性数据 & 4.3.1 点与点相连
- 第三篇 英语,学什么?——学英语,走直线是关键
- 第二篇 英语,何时学?——学英语要趁早
- 朱子思想与越南儒学
- 朱谦之和“日本阳明学”
- 9.2.4 函数的返回值
- 19.5.4 数据表的存储位置
- 11. 语言学数据管理
- 7 产品经理学数据
- 11.2.3 数据驱动的学习
- 1.4.3 形态学:对象计数
- 1.1 密码学哈希函数
- 数学家的推理过程
- 第六章 奖学金
- 第二章 美国留学申请形势
- 第6章 数据录入 & 6.1 提交录入
- 8.5 转换数据形状
- 第 二 章 学习:大脑的思考机制
- 第 五 章 营造学习环境
- 第16章 多媒体数据挖掘技术
- 第23章 时序数据挖掘
- 第9章 机器学习算法
- 第16章 工农业大数据和人工智能
- 第3章 数据
- 第11章 复杂高维多元数据的可视化
- 1.5 数据结构
- 3.4 内存数据库
- 第14章 案例:超市运营数据分析
- 第13章 案例:网页流量数据分析
- 9.3 数据类型、常量、变量与表达式
- 9.4 VBA的常用函数及常用控件
- 第3章 学习即创造
- 第15章 学习的复兴
- 力学的框架
- 相对论与力学
- 行为经济学
- 自序 学术与学术思想史
- 第1章 一入侯门“深”似海,深度学习深几许
- 第8章 损失函数减肥用,神经网络调权重
- 第05章 组织你的数据源
- 第20章 数据有效性
- 5.1.2 企业实现大数据分析平台的方式
- 第8章 大域数中据的产应品用在各个领 & 8.1 大数据产品在电商领域中的应用 & 8.1.1 大数据精准营销
- 第二章 学习驱动力: 从内而外爱上学习 & 第一节 找到学习的内在动机与外在动机
- 第二节 收藏正在成为一种伪学习
- 第一章 给初学者的初学指南
- 一、归纳教学
- 三、学年准备
- 物理学与其他学科的关系
- 第16章 操作数据库
- 7.3 函数的参数
- 乔学院
- 保存数据
- 大数据+厚数据 数据会说话?说话的是人
- 学会提问
- 避免过度思虑,学会放手
- 项目四 数字视频的制作
- 项目一 数字媒体工作室设备选择
- 卷二 最古老的学院 最古老的专业
- 卷四 在法学地图上
- 第4篇 为自学打下基础
- 第6章 营造学习的氛围
- 第八章 免疫学
- 14-4-1 查询EMP数据
- 12-18-4 计算佣金字段的行数目
- 7.5 Hadoop中的字计数程序 & 7.5.1 下载示例数据
- 9.3.3 估计回溯测试参数的质量 & 9.3.4 应对模型风险 & 9.3.5 样本数据回测 & 9.3.6 解决回溯测试的常见缺陷
- 6.6.3 VSTOXX子指数值的实现
- 3.5.4 删除数据
- C.10 用户函数
- 2.1 简介 & 2.2 从CSV文件导入数据
- 2.11 读取流数据源
- 第十章 重振生命科学产业
- 第二部分 捕获数据
- 推荐序一 行动学习:推动个体学习迈入组织学习
- 第3章 助产士:启动行动学习
- 第6章 移民经济学
- 第6章:移民经济学
- 自序:人人都应该学一点心理学
- 第一章 读懂人心:科学的读心法则
- 1.4 数组与数组公式
- 5.3 参数设置
- 13.2 淘宝网店数据分析
- 新学校
- 谁到我们学校来了?
- 附录 跑步科学术语汇整
- Chapter6 跑步力学
- 第3章 个人独立学习及与他人共学
- 学习技巧有什么用
- 版权信息 & 测一测:你对科学哲学了解多少?
- 第6章 科学与人类未来
- 第一章 人文到数字人文
- 第五章 “数字-人文”简明指南
- 4.4 时间序列数据分析
- 第11章 R语言数据可视化与数据库交互
- 2.4 数据集市
- 怪诞行为学2
- 怪诞行为学增订版
- 第14章 基于基站定位数据的商圈分析
- 第4章 数据预处理
- 第5章 函数基础知识
- 第8章 多文件中的函数设计
- 关于 & 函数
- 泰勒级数
- 5.4 Swift函数:Part 3-函数的输出
- 15.1.3 非监督式学习
- 第二章 榨取数据——机器能学会的知识
- 第六章 激发动力——从“懒癌”到沉迷学习
- 第三章 致用学习——“达成目标”的GEAR学习法
- 第3部分 各类技能学习的应用演示
- 第1章 三大学习策略之一:功利性学习,让学习不再难以坚持
- 第8章 数字经济产业政策
- 第二部分 没有数字的世界
- 附录一 18项学习工具锦囊
- 动机是学习活动的终极动力
- 科学哲学
- 第五章/Chapter Five非结构化数据
- 第四章/Chapter Four机器学习
- 第1章 从百度大数据工作的经历说开
- 第2章 大数据思维与数据驱动
- 11.1.3 方法3——通过设置函数的关键字参数
- 9.1.2 方法2——关键字参数的设置形式“**font”
- 5 放大数据
- 3.1 什么是数据库
- 第6章 Oracle内置函数 & 6.1 数值型函数
- 墨子学说
- 第4章 搭建数据化体系
- 第7章 数据化管理
- 后记 继续学习之路
- 第8章 函数
- 教学建议
- 7.2 数据Sketch
- 5.2.2 用户行为数据摄取案例
- 1.4 数据分析的流程
- 第3章 数据采集与整理
- 第八章 康德的历史与社会哲学
- 第四章 十七、十八世纪英国社会哲学
- 第7章 生物学与计算机的美妙邂逅
- 第2章 技术的指数性质
- 9.4 数据销毁和删除
- 10.2 数据导入的机密性 & 10.2.1 Flume加密
- 6.6 编写EL函数
- 5.7 函数 & 5.7.1 contains函数
- 前言 数字化的世界里如何科学地做营销
- 5.3 大数据算法库
- 第1章 企业大数据战略定位
- 第四章 家学与清代粤西文学家族
- 第三章 科学管理和社会学想象力 & 艺术是管理的锦上添花
- 第一章 从自花授粉到优势杂交——学不会与学得会的商学思想 & 学不会的就别学了
- 跋:学会说话和写文章
- 1.2 人格心理学的学科架构
- 3.2 从运筹学到系统科学
- 第4章 玩转数学公式
- 10.1 Spring的数据访问哲学
- 22.10 深入学习:参数多态
- 第八章 输牌的数学家
- 15.一群混乱的数学家
- 第6章大数据的分析处理
- 附录C SPSS Modeler函数
- 第8章 SPSS Modeler导入数据源
- 第2章 数据清理
- 5.1 机器学习综述
- 第5章 经典的机器学习案例
- 这是他们保存的运营跟踪数据 & 你需要知道数据表之间的相互关系
- 第12章 智能病人机器人与数字化人体仿真决策机制
- 第16章 不确定性数据融合用例
- 第六章 《易传》的美学思想
- 第二章 《老子》美学
- 第三章 新闻传播学理论研究
- 第一章 新闻传播学研究概述
- 11.3 综合实例——艺术数码相框
- 6.4 三维重建数据可视化
- 30、行为经济学
- 代序 数字地球、数字经济和数字货币
- 第1章 机器学习是什么——机器学习定义
- 第2章 机器学习可行吗——计算学习理论
- 茫茫文学路
- 文学与我
- 第23章 科学思维
- 第1章 学习力秘密:只有学习方法是不够的
- 第2章 快速探索数据
- 第15章 数据塑形
- 第8章 网络数据库技术
- 第7章 数据库安全与保护技术
- 04 你应该了解的大数据技术
- 02 你必须知道的大数据7大特征和8大事实
- 第一章 女性心理学概述 & 第一节 性别与女性心理学 & 一、性与性别 & 二、性分化与性激素
- 一、进化心理学的基本理论
- 引言 为什么学习最好的不是最用功的学生
- 尾声 终身学习用好大脑
- 5.3 示例程序 & 5.4 常用量化分析参数
- 3.8 其他交易数据
- 学术修辞篇
- 学术选题篇
- 真的休学记
- 11.1 SELECT:切换至指定的数据库
- 11.3.6 数据结构迭代命令
- 附录D Excel 2010的数据分析新功能
- 数据整理篇
- 9.2 揭秘行业指数轮动策略
- 第2章 指数的介绍
- 幼儿文学
- 幼儿文学
- 幼儿文学
- 第四部分 应用精益数据分析
- 如何在你的公司中注入数据文化
- 第二编 经济学家
- 第一编 经济学
- 2.2.3 完美数分类的Java 8实现
- 7.2 函数式的基础设施 & 7.2.1 架构
- 第6章 会计学基础
- 第二部分 货币:经济学、财务和会计学
- 第7章 使用函数处理财务数据
- 第13章 数据分析工具的使用
- 2 大数据时代的游戏规则
- 1 一切都是数据,数据就是一切
- 1.1 数字图像处理简介
- 第四章 神奇的化学
- 第六章 生活中的科学
- 8.为学头脑 & 9.志向真切
- 7.学、问、思、辨、行
- 7.5 参数数量不确定
- 7.3 有参数的函数
- 5.1 MNIST数据处理
- 心理学大事年表
- 行为心理学
- 四、行为分析心理学
- 四、营销心理学
- 4.3 第2天:处理大数据
- 附录A 数据库概述表 & 附录B CAP定理
- 第1章 数据结构绪论
- 8.10 散列函数的构造方法
- 第三章 秦汉易学中的美学思想
- 第五章 汉代《诗经》学的美学内涵
- 第12章 大数据在医疗领域的应用
- 第11章 大数据在交通领域的应用
- 第8章 数据平台
- 10.1 数据分布
- 第一篇 大数据的基本概念和技术 & 1.1 大数据的时代背景
- 9.3 本章小结 & 第三篇 大数据处理与项目开发 & 10.1 数据预处理
- 2.4 学会使用ECharts官方文档
- 第 6 章 深度学习:大数据时代的人工智能新途径
- 面向未来的首席学习官(代前言)
- 附录2 企业大学校长/首席学习官调查问卷
- 第17章 I/O相关的参数
- 第12章 分布式数据库架构
- 本章小结 & 附录13.A 关于对数和指数的一些代数基础
- 何时用“反向”百分数表
- 计算数组的小和
- 判断一个数是否是回文数
- 三年级下学期
- 16.1 数据准备 & 16.2 数据源
- 12.9 形态学图像处理
- 第5章 大数据挖掘建模平台
- 第1章 数据挖掘基础
- 学校 & 企业
- 社会情感学习
- 第12章 通过导入外部数据源“编辑OLE DB查询”创建数据透视表
- 07 区块链数字货币投资风险
- 03 如何买卖区块链数字货币
- 第2章 学习HTML
- 第1章 数据驱动的企业数字化转型
- 3.15 数字化复盘
- 第三节 象山心学中的美学智慧
- 第四章 朱熹、陆九渊暨理学家的美学思想
- 06 角色定位:数据、技术与思维的三足鼎立
- 推荐序二 实实在在大数据
- 第二部分 大数据时代的商业变革 & 04 数据化:一切皆可“量化”
- 5.1.3 数据集
- 2.3.5 数组赋值
- 社会心理学的确立时期
- 第十三章 回归生活诠释社会——社会心理学的应用学科 & 第一节 社会心理学在组织管理领域中的应用 & 管理心理学概述
- 第二章 块数据与区块链
- 符号学派
- 第四章 联结学派:大脑如何学习
- 第4章 使用Hadoop进行数据迁移
- 5.2 为数据处理构建函数组合 & 详细步骤
- 2.11 生成学习曲线 & 详细步骤
- 婉的大学
- 学 子
- 第三部分 数据库和大数据
- 第4章 数据挖掘应用案例
- 第2章 数据探索与准备
- 笔记②:思维导图法运用在数学科的学习
- 5.1 流式数据
- “数字商(Digital Quotient)”
- 基于谱特征的数字调制信号识别
- 第十二章 清代哲学总论
- 第十五章 浙东永嘉之学
- 推荐序 心理学有什么不同之处
- Chapter 11 偶然性在心理学中扮演的角色
- 第15章 宏观经济学的未来
- 卧底经济学.1
- 第1篇 概述篇 & 1 企业中的大数据
- 8 预测——数据分析的终极目标
- 5.18 文档考古学
- 第九章 和平心理学
- 第17章 Oracle数据库迁移PostgreSQL实践
- 第7章 数据描述
- 第9章 拥抱大数据
- 第9章 发布数据
- 附录A 实验数据
- 第6章 数据维护
- 第1章 数据可视化及Tableau概述
- 第1章 速学:短时间学会新知识的方法
- 第2章 选择:用有限的时间学该学的
- 第2章 算法的数学原理
- 01 我们从数码相机学起
- 1.5统计力学与大数定律
- 17.2. 深入学习数据库技术
- 30 行为经济学
- 一 引论:社会学和历史学
- 第3章 深度学习的理论基础——机器学习
- 1.3 机器学习分类
- 第1章 机器学习概述 & 1.1 机器学习概述
- 第六章 经济预测:经济学家为什么没有预测到 2008 年经济危机?
- 第11章 筛选数据列表
- 第6章 导入外部数据
- 教学建议
- 第4章 数据处理
- 第2章 数据收集
- 第四章 学 习
- 1.4.2 深度学习基础架构
- 1.3 深度学习的知识点汇总 & 1.3.1 深度学习的预备技术
- 中国知识产权法学研究30年
- 法哲学家对知识产权法的哲学解读
- 学会赚钱的第一步是学会别“瞎折腾”
- 特别逻辑与少数派报告
- 大数据悖论,空想的“主义”与“宗教”
- 第一节 学习与教学概说
- 第2章 数据类型
- 2.5 数字类型
- 6.7 并行化数组操作
- 5.3.3 数据分块
- 漫游思想的神经生物学
- 二、一个完整的机器学习项目
- Sklearn 与 TensorFlow 机器学习实用指南
- 第2章 读取外部数据到SAS数据集
- 第5章 数据汇总与展现
- 第11章 强化学习
- 第2章 深度学习是什么
- 第12章 计算学习理论
- 第13章 半监督学习
- 结语 科学的发明
- 第一篇 留学往事
- 第1章 强化学习是什么
- 第6章 重塑标准——构建数据管理体系
- 第12章 拒绝失败——数据治理项目的风险管控
- 第十二章:数据系统的未来
- 第一部分:数据系统的基石
- 0.3 数据表示方式 & 0.3.1 数字系统
- 22.5 函数库管理 & 22.5.1 动态与静态函数库
- 第五章 实施 科学实施、精彩呈现
- 序二 构建学习热情是建构主义教学的核心
- 第1章 视觉美学理论
- 第2章 视觉美学的起源地——自然
- 3 学霸分享,直通世界名校的超级学习法
- 1 提高成绩,在学校里脱颖而出
- 第四部分 自恋心理学
- 第一部分 性学三论
- 不快乐,是人生理的自然演化 & 愉悦学校
- 快乐比任何学问都难
- 预言73:东方哲学的力量
- 预言70:商学院的未来
- 01 物理学与品牌
- 爱情心理学
- 第一个学生
- 杨小凯的“学道”境界
- 9.3 热学50题
- 9.2 力学50题
- 17 TOXO 弓形虫与神经生物学
- 第1部分 学习编程
- 结束语 接下来学什么
- 第二部分 单机数据库的实现
- 第15章 SQL Server数据库应用系统开发
- 第3章 创建与管理数据库
- 第10章 安全领域的数据包分析
- 第1章 数据包分析技术与网络基础
- 3 随机变量的数字特征
- 第3章 集团管控模式下的风险管控及数据化管理
- 第1章 用数据驱动店铺
- 第9章 会员——大数据分析让你比他更了解他自己
- 7.6.3 建立训练数据集和测试数据集
- 深度学习资源与高级方法
- 写给年轻人的经济学通识课 & 书名页 & 版权页 & 自序 经济学,生活的科学与思考的利器
- 68.“窝里反”经济学
- 第16章 数据结构接口
- 第15章 Java中对数据的处理
- 4.6 Oracle常用函数
- 4.2 SQL的数据定义
- 第十章 如何反驳统计数据
- 第二章 精挑细选的平均数
- 第16章 机器学习之客户违约预测模型搭建 & 16.1 机器学习在金融领域的应用
- 5.2 数据乱码的处理
- 8.3 结构体数组
- 6.3 向函数传递一维数组
- 第六章 深度学习
- 第 3 章 无监督学习与预处理
- 考大学也同样失败
- 从《生命的实相》中学到的心态
- 智者学派:出售智慧的人
- 布鲁诺:烈火不能征服的哲学家
- 目录 & 01 工程学的历史与发展
- 05 我“修”故我在:工程学与知识
- 第三章 数字政府2.0建设的目标与路径
- 第二章 数字政府2.0时代
- 第5章 基于虚拟机管理程序的数据中心设计
- 第3章 策略数据中心
- 第5章 数据透视表的制作与应用
- 第1章 初识数据分析
- 第2章 SPSS数据文件的建立和管理
- 第5章 SPSS的参数检验
- 学费太贵
- 2.5.2 二维数组
- 7.8 数据操作流
- 06 构建指数型组织学习新范式 团队学习
- 18.赢单指数
- 第 3 章 音乐推荐和Audioscrobbler数据集
- 第 10 章 基因数据分析和BDG项目
- 第十五章 罪数论的转换 & 一、罪数论的演变
- 四、历史反思:刑法学的知识转型
- 第6章 数组
- 第17章 JDBC数据库编程
- 第21章 学生管理系统
- 第二章 描述性本型学
- 学习心理辅导
- 1.4 非参数统计评述
- 第十二讲 学习死亡
- 第17节 函数的使用
- 第6章 学会如何付钱
- 第二部分 赛博学习法:与学习对话的全新动态学习法
- 第2章 像“堆积木”一样认识数据指标
- 第4章 向双11进军,数据分析实战开始
- 第6章 加载数据
- 第4章 了解数据模型
- 第3章 对技术的哲学思考
- 第1章 如何学习单片机
- 8.2 函数的调用
- 第二部 公共哲学
- 第八章 公共哲学的遮蔽
- 4.2 函数依赖
- 第6章 保持函数依赖
- 1.3 数据推送的其他名称
- 9.10 构造函数与证书
- 推荐序二 在科学和历史之间
- 第1章 扩展你的数据挖掘工具箱
- 第9章 挖掘数据异常
- 5.2 数据库参数文件
- 第 1 章 学习敏捷
- 第十章课程与教学管理
- 第1章 深度学习
- 第二篇 数据库与数据表的创建和管理
- 第1章 关系数据库介绍
- 函数式替代方案
- 函数式模式介绍
- 第5章 数据
- 第8章 数轴
- 阿德勒心理学是“勇气的心理学”
- 第五部分 政府、经济学和政治学
- 学徒期是什么
- 学徒模式是什么
- 第3章 学前期
- 3.1 学前期的生理发展
- 永远做个初学者
- 第十七章 学术
- 1.11 基础数学知识简介 & 1.11.1 求解代数方程
- 第7章 成本会计大学问
- 《名家文学读本》丛书总序
- 第一部分 揭秘指数基金
- 第三章 指数基金的中国故事
- 第11章 使用phpMyAdmin管理MySQL数据库
- 第9章 MySQL数据库
- 第5章 数据类型和运算符
- 第7章 插入、更新与删除数据
- 第4章 ◄数据表的基本操作►
- 第3章 ◄数据库的基本操作►
- 第7章 数组与指针
- 第6章 函数
- 为学者,必有初。小学终,至四书。
- 第5章 使用图表进行数据可视化
- 11 今天哲学还能刺痛谁?
- 第2章 高效学习的障碍
- 第3章 博赞有机学习技巧(BOST)
- 第4章 坏数据
- 第1章 大数据概述
- 第15章 大规模数据处理计算引擎Spark
- 第9章 记忆与学习:记住你所学的东西
- 想好好学习,但学习没动力怎么办?
- 8.6 基数排序
- 第五章 经济学随想
- 第3章 与数据同行
- 2.2.2 指数值的跨期计算 & 2.3 指数构建和管理
- 2.3.2 指数权重
- 第10章 形态学图像处理
- 第7章 保存数据
- 第9章 科学计算
- 第一章 学而第一
- 第三章 学的活动
- 第 3 章 数据项目的风险管理
- 第 7 章 确保数据完整性
- 第4章 学习更多图表和定制化
- 第6章 数据透视表
- 第3章 数据排序
- 第6章 联邦迁移学习
- 第3章 分布式机器学习
- 第17章 你的学习策略
- 第5章 深度学习优化
- 第2章 机器学习快速入门
- 第 6 章 翻转课堂与深度学习改变了学校的教育模式
- 第 1 章 翻转课堂与深度学习解决方案
- 第3章 电信大数据分析体系
- 第八章 全科医学岗位培训
- 第七章 面向农村的全科医学学历教育
- 第3篇 深度学习进阶
- 配套学习资源
- 第13章 字符串处理函数
- 第11章 函数与文件
- 第5节 建设数据科学团队
- 连接学习用的数据库(登录)
- 第2章 公式、函数、图表的数据来源
- 第5章 认识常用函数
- 第六章 方法6:通过合作与协作学习,打造高效的分组学习
- 第10章 基本数据库对象管理
- 第15章 数据库的常规备份与恢复
- 第4章 大数据的获取
- 6.4 Hive数据导入HBase的两种方案
- 论文学的几项功能
- 第5章 数据
- 译后记 学习型组织不是“学习型组织”
- 第11章 字符数组
- 14.4 指针和函数
- 第二部分 机器学习
- 第十章 圆的现象学
- 第9章 结构动力学分析
- 第5章 结构静力学分析
- 第8章 Spark MLlib与机器学习
- 第11章 大数据分析系统
- 第6章 动力学分析概述
- 第12章 刚体动力学分析
- 二、数量指标指数的编制
- 三、统计的含义 & 第二节 统计学的学科体系 & 一、统计学的研究对象
- 5.1.4 Python访问MySQL数据库
- 5.1.3 数据库管理工具Navicat
- 附录C SQL优化数据字典
- 3 音乐与史学:晚清学术的多旋律并进
- 1 引言:西学冲击下近代中国学术分科的演变
- 第5章 广告数据及网站数据的监测原理
- 第六章 《数据质量法》的困局
- 第二章 数据帝国的兴起
- 第五章 科学的目的
- 23. 科学方法
- 第2章 数据中心网络演进
- 第17章 虚拟数据中心和云计算
- 第十二章 开始你的大数据之旅
- 第九章 大数据愿景训练
- 版权信息 & 前言 何为工作必备的“数字力”?
- 7.3 view函数、constant函数和pure函数
- 3.10 数组 & 3.10.1 固定数组 & 3.10.2 动态数组 & 3.10.3 特殊数组
- 第二章 日常操作心理学
- 第6章 Ceph的数据读写
- 第一部分 函数式思想
- 第五部分 数字分析
- 1906年诺贝尔生理学或医学奖颁奖词
- 第二部分 重新思考数字化时代下的领导力和人才
- 第三部分 营造数字化文化,4个原则助你打造成熟的数字化组织
- 第5章 如何进行电商网站运营数据分析
- 第2章 电商数据分析岗位必备的技能
- 第1章 管理与管理学
- 第二十章 后政治学
- 第二十章 后政治学
- 上学
- 3.1.2 参数类型
- 3.1.1 什么是参数
- Part 1 学习篇
- 土土和他的同学
- 土土做学问
- §27 热力学定律
- 第7章 数据库存储 & 7.1 MongoDB数据库 & 7.1.1 NoSQL概述
- 4.2.3 findall()函数
- 第 4 章 数据
- 第 6 章 数据库
- 3.4.3 数据流图
- 1.5 软件工程学的知识体系
- 第1章 广告和广告学
- 7.3 数据的合并
- 2.1 基本数据类别
- 第三章 两汉的学术思想
- 第八章 隋唐佛学
- 张学良年谱简编
- 第12章 集成学习
- 结语 经济学的未来
- 第4章 机器学习工具Scikit-learn
- 1.3 机器学习领域分类
- 第9章 PostgreSQL写入与读取数据工具
- 第5章 使用SQL Power Architect进行数据建模
- Chapter 7 数论问题
- 第1章 统计学概述
- 5.4 非参数检验
- 第一章 新闻传播学研究综述 & 2017年中国的新闻学研究
- 第六章 新闻传播教学与科研
- 第一章 生物学与人类行为
- 第15章 实现业务数据的数据清洗模块
- 8.4 VBA数组
- 第5章 数字化转型的路径与目标
- 第6章 对数字化银行的展望
- 第6章 是罪人还是圣人——自私心理学
- 第1章 阿里云机器学习
- 9.2 密码学原理
- 5.5 字符输入函数getchar()
- 第21章 数据结构
- 第21章 数据结构
- 第6章 用特征存储元数据
- 第6章 数据泵(Data Pump)
- 9 多维异构数据的分析方法
- 5 大数据平台工具
- 第六章 数据
- 3.1 数的表示
- 3.2 FPGA中数的运算
- 第四篇 Java数据结构
- 第5章 数组
- 第2章 深度学习框架
- 第7章 深度学习实战
- 第二章 日常行为心理学
- 设计心理学2:如何管理复杂
- 第5章 数组
- 第1章 经济学十大原理
- 第2章 像经济学家一样思考
- 第2章 Hadoop大数据关键技术
- 第二篇 Hadoop大数据平台搭建与基本应用
- 拥抱数据驱动的新时代
- 第1章 指数基金面面观
- 第5章 指数基金中的“最”产品
- 文学论
- 第八章 数据开放运动
- 访谈 大数据时代的“中国梦”
- 虚拟指数
- 非公开数据馈送
- 第1章 让学习转化发生——从行动/应用的视角来理解学习转化
- 第3章 学习转化的新挑战——聚焦学习所产生的影响
- 第4章 函数
- 第6章 函数
- 第3章 学霸是如何炼成的——卓胜脑力学科应用
- 第四章 公寓内的文学认同——沈从文早年经历的社会学再考察
- 序言 为什么数字如此迷人
- 第 1 章 数据结构为何重要
- 附录1 各项学习修炼
- |第11章| 团队学习
- 第3章 ◄数据表的操作►
- 第6章 ◄认识函数►
- 第9章 数据库应用系统开发实例——教学管理系统
- 8.5 巧解西部数据密码
- 8.4 西部数据硬盘认盘慢数据恢复
- 第5章 函数(function) & 5.1 声明函数 & 5.1.1 普通函数的声明形式
- 5.4 匿名函数——没有函数名字的函数 & 5.4.1 定义一个匿名函数
- 六十六、贵在现学现用
- 附录:关于“good”的翻译的哲学解释
- 10.5 数据集合Dataset
- 第1章 数据库基础
- 第三部分 数据可视化
- 任务2.2 选用数控机床
- 任务3.3 熟悉数控车削编程基础
- 第18章 数据结构基础
- 第33章学生信息管理系统
- 第18讲 核实并添加交易数据
- 第16讲 保护数据的安全
- 第5章 数据库缓存内存
- 第9章 数据库索引
- 第6章 整数集合
- 第11章 学会放松
- 第 4 章 神经网络的学习
- 第 8 章 深度学习
- 1.1 何谓机器学习
- 第二部分 利用回归预测数值型数据
- 3 深度学习简介
- 附录A SQL Server 支持的运算符与函数 & 附录B 学籍管理数据表结构 & 参考文献
- 2.6 高阶函数
- 2.1 函数基础 & 2.1.1 函数的作用
- 现代神学:科学医学
- 第6章 Oracle内置函数
- 第四篇 数据库应用篇
- 第10章 Python数据库编程
- 第七章 凯特勒的统计数据和麦克斯韦的分子理论——数据与社会学,数据与物理学
- 第3章 有监督机器学习
- 第2章 无监督机器学习
- 第一节 刑法哲学的价值内容
- 目录 & 《名家文学读本》丛书总序
- 哲学之城
- 操作系统之哲学原理
- 22.4 操作系统设计的第3条哲学原理:懒人哲学
- 第18章 共享Excel数据
- 7.3 搭建深度学习开发环境
- 7.6 端到端深度学习
- 零售的哲学
- 第3章 数据中心信息安全管理
- 第6篇 大数据下的IT架构变迁
- 第8章 基于Storm的实时数据平台
- 第2章 Access数据库与数据表
- 7.2.4 素数币——有科学价值的挖矿
- 第8章 盲数字水印学习系统
- 第1章 神经网络的数学原理
- 第13章 动态推理和参数学习
- 13.8 Heap学习之二 & 13.8.1 Heap构造函数
- 第5章 数据透视表筛选
- 第1章 认识数据透视表
- 第8章 目视光学系统设计方法
- 第6章 Keras MNIST手写数字识别数据集
- 第2章 深度学习的原理
- 第四章 组织行为学
- 第11章 强化学习
- 第5章 非监督学习
- 13.2.2 隐式类型数组
- 3.2 基础数据类型 & 3.2.1 数值类型
- 3.14 wc:统计文件的行数、单词数或字节数
- 第一章 数字化的本质
- 4.5 InnoDB数据页结构
- 第3章 数据模型
- 第八章 区块链经济学的范式革命
- 第13章 自定义函数
- 教学建议
- 第5章 今日头条数据分析
- 第3章 微信公众号数据分析
- 第2章 玩转数据分析
- 第6章 数据访问
- 项目六 统计指数
- 创新和有条件的学习
- 第10章 数据库监控及调优
- 第13章 数据库扩容
- 第一篇 数据库体系结构
- 第三篇 数据库高级特性
- 第3章 数据预处理
- 第2章 数据分析小工具
- 第五章 数字化赋能
- 第七部分 国际宏观经济学
- 第五讲 礼学经典
- 第16章 心理学在社工中的应用
- 第1章 金融数据挖掘与建模应用场景
- 第5章 数字
- 第四部分 函数 & 第16章 函数基础
- 五、科学假说的评价标准
- 二、逻辑学的历史与现状
- 第1章 Python机器学习入门
- 第七章 当代中国民俗学研究概观——非物质遗产保护时代的中国民俗学[1]
- 下编 民俗学与现代社会
- 第8章 函数
- 第3章 数字类型的数据
- 第5章 函数
- 第十章 统计学:没你想得那么难
- 序言 重新想象学习场景
- 第1章 数字化时代已经到来
- 第9章 数字化时代的管理和企业文化
- 说话心理学
- 8.3.4 监听HTTPS数据
- 第2章 数据分析方法论
- 第5章 数据中台
- 第2章 学习jQuery必会的JavaScript基础
- 3.2 图、会话和提取数据
- 第1章 引言 & 1.1 走入深度学习
- 第1章 互联网+统计学+R语言
- 第九章 学习:经验的组织
- 第15章 数据库物理设计
- 第1章 数据迁移技术支持服务
- 3.11 复制数据库
- 3.9 分离数据库
- 数字金融普惠性的证据
- 数字技术的发展路径
- 第13章 文本数据处理——亲,见字如“数”
- 62 手术成功的学子能圆大学梦
- 在大学里伸个懒腰
- 中国法学的再造
- 八 选择学校和人生线路
- 三 升学顾问与人生规划
- 第四章 数据优政:大数据提升政府治理能力
- 第 2 章 懒惰学习:最近邻方法
- 02 阶段二:解决问题 数据分析的核心
- 结语 数据分析,决战智能商业时代的关键
- 第4章 数据定义
- 第5章 数据字典
- 3 生物学背景
- 上篇 速算篇(经验数据参考)
- 下篇 速查篇(常用数据)
- 第一章 数字货币概况
- 第一部 挖到数字黄金
- 第20章 宏观经济学概述
- 第1章 经济学基础知识
- 三十 哲学问题四则 ——答陈文纨、张凄咽等
- 附录A 冷轧辊加工数据 & 附录B 冷轧辊加工数据预处理格式 & 参考文献
- 第3章 数据中心的架构与技术
- 7. 数据新政:建设现代国家的治理体系
- 1. 数据平权:新商业文明的冲击和原罪
- 第一章 经济学,就这么点事儿!
- 第8章 数组
- 第3章 简单函数
- 第23章 函数接口
- 第8章 在学习领域应用游戏化
- 第3章 教学游戏化的支撑理论
- 第7章 其他深度学习模型
- 第3章 深度学习之卷积网络
- 1 为深度学习开发设置Spark
- 第1章 学会提出好问题
- 行为设计学:打造峰值体验
- 第七部分:改善你的研究习惯和学习习惯,成为或继续做一位“乐学者”
- 06 智慧政府:从数据孤岛到共享共治
- 推荐序:稻盛心学
- 第1章 图表背后杂乱无章的数据源
- Twitter数据的收集和处理
- 利用社交网络数据
- 第4章 数据处理
- 第3章 数据拟合
- 第三章 领导者学习法
- 阿来:现在是不是太有点儿为文学而文学了?
- 第11章 肿瘤病因学
- 第12章 肿瘤发病学
- 英汉生理学名词对照
- 第4章 开普敦大学求学时代(1957—1961)
- 第12章 AWS数据中心实例
- 第11章 虚拟化大数据平台
- 第1章 数值策划的定位
- 第2章 数值策划的基础知识
- 《管理学》
- 第7章 Storm的数据源编程单元:Spout
- 第1章 大数据环境下的云计算与物联网
- 06 学习的科学法则 如何成为高段位学习者
- 一、经济体系的态函数
- 第一章 国学应该是“大国学”
- 4.学生作业点评
- 结语 医学的本质
- 第3课 办理公司注册,跟我学
- 第7章 Android数据存储
- 第1章 数据库基本概念
- 第4章 M函数入门
- 第11章 pandas数据清洗
- 5.2.1 数据帧
- 第4章 数据库概念设计及数据建模
- 第一部分 数字化基础审视
- 第7章 大数据营销平台大数据在营销上的应用
- 第13章 “X by Y”的设计:奥地利电子艺术节档案的信息美学探索 Moritz Stefaner
- 第4章 色彩:数据可视化的“灰姑娘” Michael Driscoll
- 第5章 数据存储
- 第13章 数据和文件
- 第十二章 以教代学
- STEP ONE 学习的本质
- 第六部分 相关学说
- 理解现代经济学[1]
- 第二章 中医脊柱运动力学
- 第3章 数据可视化
- 第5章 常用函数
- 如何高效学习
- 第三节 语言意义的语用学解释
- 第4章 神经语言学的研究方法
- 5.4 19世纪:失语症科学研究的开始
- 第4章 开始学习绘画
- 第 1 章 机器学习与sklearn
- 第 3 章 深度学习与PyTorch
- 第五节 在社会中学习
- 11.2 二值图像中的基本形态学运算
- 11.4 灰度图像中的基本形态学运算
- 3.4.2 密码学——数字签名和哈希算法
- 学习JavaScript数据结构与算法(第3版)
- 9.3.4 强化学习、机器人与目标函数
- 8.6.3 测试 & 8.7 相机跟随 & 8.7.2 数学原理
- 第16章 数据库编程
- 五、民生:讲述百姓自己的数字
- 致读者 & 导言 哲学的作用
- 第3章 关键少数行为
- 第4节 学会写对话,你就赢了一半
- 第 2 章 创建猜数游戏
- 第 3 章 给猜数游戏创建GUI
- 第3章 函数
- 第3章 函数
- 第3章 函数
- 第1章 大数据与云计算
- 第5章 数组和稀疏矩阵
- 第10章 基于用户日志的反馈学习
- 9.2 大数据分布式缓存
- 第三章 非数理视角概述——剑桥大学达尔文学院讲义,†
- 怪老头儿入小学
- 第三章 数字化的超级价值——数字战略指南
- 科学的新纪元
- 第12章 MySQL查询优化器相关数据结构
- 第十五章 学会在海洋中遨游
- 03 数字货币之美
- 第二部分 尖子生是怎样学习的
- 第四章 频繁转学
- 一、德国历史学派
- 第四讲 经济学的开端原创的经济学家与经济学的原创议题
- 第8章 数据的更新
- 第1篇 数据库入门
- 第12章 数据仓库与数据挖掘的综合应用
- Ⅲ 关于“是”(存在)的科学
- 人会在数字上出现锚定现象 & 数字顺序效应
- 92 玩游戏可以提高知觉学习能力 & 玩电子游戏可以提高知觉学习能力
- 6 标记分布学习及其应用
- 第10章 学会选择靠if语句
- 第一章 从游戏到游戏学
- 第20章 快速数据立方算法
- 第18章 大数据可视化实践
- 第8章 其他函数应用技巧
- 第2章 财务函数应用技巧
- 第4章 搭建CDH大数据平台
- 15.1 IPv6数据包头部
- 第5章 使用函数
- 第 5 章 数据类型
- 第 2 章 数据库管理
- 日本儿童文学导论
- 意大利儿童文学概述
- 第三章 科学与实业
- 第七章 程少堂智慧课堂教学艺术
- 第六章 余映潮智慧课堂教学艺术
- 第11章 大数据服务
- 第8章 用集合组织数据
- 第13章 数据库开发基本操作
- 第5章 流量的数据分析
- 第9章 数据打造金牌客服
- 附录B 分析数据包结构
- 4.4 函数
- 第三部分 科学求爱 & 05 吸引的科学原理 诱惑的秘密
- 第9章 数据接口用例
- 第 3 章 基本数据结构
- 第二部分 数字化变革
- 第13章 大数据
- 附录 学习型组织罗盘
- 第1章 深度学习入门
- 《老张的哲学》与《赵子曰》
- 第十章 心理学的诡计
- 第1章 数据分析过程的主要问题
- 版权信息 & 前言 每个人的经济学
- 第7章 创建在线学习应用
- 第10章 机器学习应用框架
- 第1章 机器学习和TensorFlow简述
- 第6章 C51的函数
- 第5章 函数
- 第8章 数据结构
- 第4章 数据更新操作
- 第2章 操作数据库
- 第6章 双重数据
- 第7章 函数式编程
- 第三部分 数据准备
- 下篇 典型力学问题程序实践
- 8.悠游美国文学之城
- 12.大家都在学英语?
- 第一章 语文与学识
- 第1章 经济学的思维方式
- 后记 经济学家知道什么
- 3 区块链与数字货币
- 第6章 数据分布型图表
- 第3章 数据可视化基础
- 二、文克尔曼:一门新兴科学的诞生
- 第16章 动态地分析人口学特征
- 第18章 云计算、大数据与云数据库
- 第11章 存储过程与函数和包
- 第6章 数组
- 第12章 数组
- 第1章 成就天使的魔鬼学校
- 第二章 广告心理学的产生与发展
- 第一节 广告心理学诞生的理论背景
- 第二章 中西美学的整体比较
- 第九章 日常生活中的价格与经济学 ——学会从交易成本的角度分析商品的价格
- 刑法学讲义
- 第一部分 泰博学院记
- 第6章 网站运营数据分析与优化
- 附录B 给科学家
- 附录A 给哲学家
- 第 9 章 JDBC 数据源
- 第2章 认识电子学世界
- 第一章 神奇的数字
- 任务2.1 输入参加投票的学生人数
- [大思路] AI如何融入数据科学团队
- 第13章 数组与科学计算 & 13.1 NumPy简介
- 第四章 深度学习的方法
- 《战略几何学》的承诺 & 致谢
- 2.3 实验数据
- 2.2 调查数据
- 第6章 PHP数组
- 第6章 ◄MySQL函数►
- 第一部分 学习的技巧
- 第四部分 数据挖掘案例精选
- 第一部分 SPSS数据分析基础
- 第3章 库函数问题
- 第六篇 介入超声学
- 3.3 共享池的相关参数
- 11 “首席指数官”的诞生
- 第1章 数据库管理系统的事务原理
- 第1章 概述:数据运营基础 & 1.1 大数据时代
- 第13章 Visual C++数据库编程
- 宋朝说话人的家数问题
- 第0讲 只要会做四则运算,便可掌握贝叶斯统计学 本书的特点 & 第1部 快速学习!理解贝叶斯统计学的精髓
- 第三章 大数据打造产业数字化底座
- 5.5 团队的沟通 & 5.5.1 “听”的哲学
- 关注用机器学习解决社会问题
- 第2天 循序渐进学会股指期货
- 第3章 倡导团队医学
- 03 人文科学,从人出发
- 第七章 创办企业,科学管理
- 第1章 数码摄影的基本流程
- 第5章 数据分析师实战技能
- 第2章 直面数据分析师面试
- 第一部分 教学如何打破常规
- 第1章 相关经济学
- 第 6 章 相似性学习
- 互联网的文化影响 & 大学生网络消费行为的人类学研究
- 互联网人类学理论展望 & 建构信息社会学的新研究议程
- 第7章 数据存储
- 第11章 数据降维
- 第4章 数据探索
- 第2章 数据类型
- 第5章 转移学习
- 第9章 学习规则
- 9.3.4 数字签名与数字证书
- 中西学交融语境下的哲思
- 15.5 数据类型 & 15.5.1 基本数据类型
- 第二单元 数据支撑体系是如何运作的?
- 第2章 Spark学习环境的搭建
- 第7章 学会学习
- 第1章 数据中心简介
- 2.1 监督学习经典模型
- 文学
- 大学
- 2.2 数据类型的分类
- 书名页 & 目录 & 众说大数据
- 1.4 数据类型
- 第四章 意志自由:学说史
- 哈佛谈判心理学
- MBA轻松读:金融学
- 结语 你能学会任何一种外语!
- 学习卡的使用说明
- 案例学习1 跨越愤怒
- 案例学习3 克服不安
- 1.4.3 连接PostgreSQL数据库