人脸识别---利用caffe实现多层特征学习人脸识别网络

摘要:本文主要讲解如何利用caffe搭建自己的网络,本文主要讲利用caffe搭建一种Hierarchical Feature Representation的网络。网络如下图:

这里写图片描述

数据库:CASIA-WebFace数据集,可以到我的网盘中下载:http://pan.baidu.com/s/1nuWsju5。在我的试验中我选用1000人的样本训练,在CASIA-WebFace数据中1000人包含图片最多,大概加起来有10W+的数据。

参看上篇博文:http://blog.csdn.net/hlx371240/article/details/51388022

1. 建立训练集和验证集
配置好ourfaceNet中的路径,执行ourfaceNet可以得到两个文件夹face_train_lmdb和face_val_lmdbface_val_lmdb.
ourfaceNet.sh

#!/usr/bin/env sh
# Create the imagenet lmdb inputs
# N.B. set the path to the imagenet train + val data dirs

EXAMPLE=facenet
DATA=facenet
TOOLS=./build/tools

TRAIN_DATA_ROOT=ourfacenet/data/
VAL_DATA_ROOT=ourfacenet/data/

# Set RESIZE=true to resize the images to 256x256. Leave as false if images have
# already been resized using another tool.
RESIZE=true
if $RESIZE; then
  RESIZE_HEIGHT=128
  RESIZE_WIDTH=128
else
  RESIZE_HEIGHT=0
  RESIZE_WIDTH=0
fi

if [ ! -d "$TRAIN_DATA_ROOT" ]; then
  echo "Error: TRAIN_DATA_ROOT is not a path to a directory: $TRAIN_DATA_ROOT"
  echo "Set the TRAIN_DATA_ROOT variable in create_imagenet.sh to the path" \
       "where the ImageNet training data is stored."
  exit 1
fi

if [ ! -d "$VAL_DATA_ROOT" ]; then
  echo "Error: VAL_DATA_ROOT is not a path to a directory: $VAL_DATA_ROOT"
  echo "Set the VAL_DATA_ROOT variable in create_imagenet.sh to the path" \
       "where the ImageNet validation data is stored."
  exit 1
fi

echo "Creating train lmdb..."

GLOG_logtostderr=1 $TOOLS/convert_imageset.bin \
    --resize_height=$RESIZE_HEIGHT \
    --resize_width=$RESIZE_WIDTH \
    --shuffle \
    $TRAIN_DATA_ROOT \
    $DATA/train.txt \
    $EXAMPLE/face_train_lmdb1

echo "Creating val lmdb..."

GLOG_logtostderr=1 $TOOLS/convert_imageset.bin \
    --resize_height=$RESIZE_HEIGHT \
    --resize_width=$RESIZE_WIDTH \
    --shuffle \
    $VAL_DATA_ROOT \
    $DATA/val.txt \
    $EXAMPLE/face_val_lmdb1

echo "Done."
  1. 求均值文件
    make_mean.sh
EXAMPLE=facenet
DATA=facenet
TOOLS=./build/tools

$TOOLS/compute_image_mean $EXAMPLE/face_train_lmdb \
  $DATA/face_mean.binaryproto

echo "Done."

这样可以得到face_mean.binaryproto

3.根据上图搭建自己的框架
我搭建的是分层式的网络,可以得到卷积层具有区分性的特征
train_val.prototxt

name: "train_val.prototxt"
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
    crop_size: 128
    mean_file: "facenet/face_mean.binaryproto"
  }
  data_param {
    source: "facenet/face_train_lmdb"
    batch_size: 50
    backend: LMDB
  }
}
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    mirror: false
    crop_size: 128
    mean_file: "facenet/face_mean.binaryproto"
  }
  data_param {
    source: "facenet/face_val_lmdb"
    batch_size: 50
    backend: LMDB
  }
}
layer {
  name: "conv1/7x7_s2"
  type: "Convolution"
  bottom: "data"
  top: "conv1/7x7_s2"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 40
    pad: 3
    kernel_size: 7
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "conv1/relu_7x7"
  type: "ReLU"
  bottom: "conv1/7x7_s2"
  top: "conv1/7x7_s2"
}

layer {
  name: "pool1/3x3_s2"
  type: "Pooling"
  bottom: "conv1/7x7_s2"
  top: "pool1/3x3_s2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "pool1/norm1"
  type: "LRN"
  bottom: "pool1/3x3_s2"
  top: "pool1/norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}

layer {
  name: "conv2/7x7_s2"
  type: "Convolution"
  bottom: "pool1/norm1"
  top: "conv2/7x7_s2"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 40
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}

layer {
  name: "conv2/relu_7x7"
  type: "ReLU"
  bottom: "conv2/7x7_s2"
  top: "conv2/7x7_s2"
}

layer {
  name: "pool2/3x3_s2"
  type: "Pooling"
  bottom: "conv2/7x7_s2"
  top: "pool2/3x3_s2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}


layer {
  name: "loss1/classifier"
  type: "InnerProduct"
  bottom: "pool2/3x3_s2"
  top: "loss1/classifier"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 1000
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "loss1/loss"
  type: "SoftmaxWithLoss"
  bottom: "loss1/classifier"
  bottom: "label"
  top: "loss1/loss1"
  loss_weight: 0.3
}
layer {
  name: "loss1/top-1"
  type: "Accuracy"
  bottom: "loss1/classifier"
  bottom: "label"
  top: "loss1/top-1"
  include {
    phase: TEST
  }
}

layer {
  name: "loss2/conv"
  type: "Convolution"
  bottom: "pool1/norm1"
  top: "loss2/conv"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 40
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "loss2/relu_conv"
  type: "ReLU"
  bottom: "loss2/conv"
  top: "loss2/conv"
}

layer {
  name: "loss2/pool"
  type: "Pooling"
  bottom: "loss2/conv"
  top: "loss2/pool"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}


layer {
  name: "loss2/classifier"
  type: "InnerProduct"
  bottom: "loss2/pool"
  top: "loss2/classifier"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 1000
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}

layer {
  name: "loss2/loss"
  type: "SoftmaxWithLoss"
  bottom: "loss2/classifier"
  bottom: "label"
  top: "loss2/loss1"
  loss_weight: 0.3
}
layer {
  name: "loss2/top-1"
  type: "Accuracy"
  bottom: "loss2/classifier"
  bottom: "label"
  top: "loss2/top-1"
  include {
    phase: TEST
  }
}

layer {
  name: "loss3/conv"
  type: "Convolution"
  bottom: "loss2/pool"
  top: "loss3/conv"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 40
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "loss3/relu_conv"
  type: "ReLU"
  bottom: "loss3/conv"
  top: "loss3/conv"
}

layer {
  name: "loss3/pool"
  type: "Pooling"
  bottom: "loss3/conv"
  top: "loss3/pool"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}


layer {
  name: "loss3/classifier"
  type: "InnerProduct"
  bottom: "loss3/pool"
  top: "loss3/classifier"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 1000
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}

layer {
  name: "loss3/loss"
  type: "SoftmaxWithLoss"
  bottom: "loss3/classifier"
  bottom: "label"
  top: "loss3/loss1"
  loss_weight: 0.3
}
layer {
  name: "loss3/top-1"
  type: "Accuracy"
  bottom: "loss3/classifier"
  bottom: "label"
  top: "loss3/top-1"
  include {
    phase: TEST
  }
}

layer {
  name: "loss4/conv"
  type: "Convolution"
  bottom: "loss3/pool"
  top: "loss4/conv"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 40
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "loss4/relu_conv"
  type: "ReLU"
  bottom: "loss4/conv"
  top: "loss4/conv"
}

layer {
  name: "loss4/pool"
  type: "Pooling"
  bottom: "loss4/conv"
  top: "loss4/pool"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}

layer {
  name: "loss4/fc"
  type: "InnerProduct"
  bottom: "loss4/pool"
  top: "loss4/fc"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 1024
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.2
    }
  }
}
layer {
  name: "loss4/relu_fc"
  type: "ReLU"
  bottom: "loss4/fc"
  top: "loss4/fc"
}
layer {
  name: "loss4/drop_fc"
  type: "Dropout"
  bottom: "loss4/fc"
  top: "loss4/fc"
  dropout_param {
    dropout_ratio: 0.7
  }
}

layer {
  name: "loss4/classifier"
  type: "InnerProduct"
  bottom: "loss4/fc"
  top: "loss4/classifier"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 1000
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}

layer {
  name: "loss4/loss"
  type: "SoftmaxWithLoss"
  bottom: "loss4/classifier"
  bottom: "label"
  top: "loss4/loss1"
  loss_weight: 1
}
layer {
  name: "loss4/top-1"
  type: "Accuracy"
  bottom: "loss4/classifier"
  bottom: "label"
  top: "loss4/top-1"
  include {
    phase: TEST
  }
}

4. 接下来就是写自己的solver.prototxt
solver1.prototxt

net: "facenet/train_val.prototxt"
test_iter: 1000
test_interval: 4000
test_initialization: false
display: 100
average_loss: 100
base_lr: 0.005
lr_policy: "step"
stepsize: 320000
gamma: 0.96
max_iter: 100000
momentum: 0.9
weight_decay: 0.0002
snapshot: 4000
snapshot_prefix: "facenet/face_model"
solver_mode: GPU

solver2.prototxt

net: "facenet/train_val.prototxt"
test_iter: 1000
test_interval: 4000
test_initialization: false
display: 100
average_loss: 100
base_lr: 0.001
lr_policy: "step"
stepsize: 320000
gamma: 0.96
max_iter: 100000
momentum: 0.9
weight_decay: 0.0002
snapshot: 4000
snapshot_prefix: "facenet/face_model"
solver_mode: GPU

solver3.prototxt

net: "facenet/train_val.prototxt"
test_iter: 1000
test_interval: 4000
test_initialization: false
display: 100
average_loss: 100
base_lr: 0.0001
lr_policy: "step"
stepsize: 320000
gamma: 0.96
max_iter: 100000
momentum: 0.9
weight_decay: 0.0002
snapshot: 4000
snapshot_prefix: "facenet/face_model"
solver_mode: GPU

包括了三个solver.prototxt,三个solver.prototxt有不同的学习率,都学习了10w次迭代。

5.建立自己的训练脚本

./build/tools/caffe train \
    --solver=facenet/solver.prototxt \

./build/tools/caffe train \
    --solver=facenet/solver.prototxt \
    --weights=facenet/face_model_iter_100000.caffemodel -gpu=0

./build/tools/caffe train \
    --solver=facenet/solver.prototxt \
    --weights=facenet/face_model_iter_200000.caffemodel -gpu=0

最后执行各个脚本就可以把自己的网络搭建起来了。当然我们可以根据自己的需求去搭建我们的网络,我们只要记住name,top,bottom这三个就可以轻松搭建任意的网络去完成我们的任务。

  • 1
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 20
    评论
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值