自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

荪荪的博客

一枚无价不才的小女子!

  • 博客(540)
  • 资源 (14)
  • 论坛 (1)
  • 问答 (1)
  • 收藏
  • 关注

原创 TensorRT教程

本教程不适用于CUDA新手TensorRT简单介绍现在TRT出了dynamic shape,重新应用与语音领域,成功一半。(目前在腾讯)闭源部分就是官方提供的库,是TRT的核心部分;开源部分在github上,包含Parser(caffe, onnx)、sample和一些plugin。一、 如何选择TensorRT版本建议使用TensorRT6.0或者TensorRT7.1:(1)GA版本;(2)支持的cuda版本广泛TensorRT6.0支持的cuda版本广泛,cuda9.0,cuda10

2021-05-14 09:54:12 38

原创 TensorRT+CUDA加速优化版CenterNet旋转目标以及水平目标框的检测

前言由于工作项目所需,一直用centerNet做旋转目标检测,在实际产品或者工业应用上落地此检测算法,那么在足够的算力下, 更好优选的方式还是需要c/c++来部署实现。那么CenterNet也带来一个问题,那就是部署不太容易,主要是两个方面:主流实现大多不好支持onnx导出;后处理与传统的检测算法不太一样,比如nms,CenterNet用的实际上是一个3x3的maxpooling。此处还涉及到一点就是,原版的centerNet并可以检测旋转目标,所以此处就涉及到一个角度问题。首选是将cent

2021-05-11 09:23:58 33

原创 对ONNX模型进行BN和卷积层的融合

import onnximport osfrom onnx import optimizer# Preprocessing: load the model contains two transposes.# model_path = os.path.join('resources', 'two_transposes.onnx')# original_model = onnx.load(model_path)original_model = onnx.load("resne18.onnx")#

2021-05-07 11:26:03 23

原创 Pytorch修改指定模块权重的方法,即 torch.Tensor.detach()和Tensor.requires_grad方法的用法

一、detach()那么这个函数有什么作用?假如A网络输出了一个Tensor类型的变量a, a要作为输入传入到B网络中,如果我想通过损失函数反向传播修改B网络的参数,但是不想修改A网络的参数,这个时候就可以使用detcah()方法a = A(input)a = a.detach()b = B(a)loss = criterion(b, target)loss.backward()以下代码就说明了反向传播到y就结束了,没有到达x,所以x的grad属性为Noneimport torch as

2021-05-07 11:03:21 40 1

原创 借一栗子讲解基于C的CUDA并行计算

代码1// ConsoleApplication6.cpp : 定义控制台应用程序的入口点。//#include "stdafx.h"#include <iostream>using namespace std;//自定义数据类型 数据对齐typedef struct student{ char label[1]; int number; float score;}stu;int _tmain(int argc, _TCHAR* argv[]){ //在cp

2021-03-29 09:13:12 85

原创 C语言基础

基本数据类型----变量的定义int a ; // int整形程序执行这句语句的时候,系统会在存在中开辟一个大小的为4个字节的空间,用于存放一个整数;这个内存空间表示的值就是变量a的值,这里的a为变量名;变量名有子母,数字、下划线组成,其中数字不能作为变量名的开头。char c;程序执行这句语句的时候,系统会在存储中开辟一个大小为1个字节的空间,用来存放一个字符;这里的字符指的是英文字符,中文是无法用一个字节去存储的。输入输出输入处处函数的声明都包含在<stdio.h>

2021-01-24 22:30:33 91

原创 并行及分布式框架 -- MPI/NCCL/OPENMP技术

初稿未完成摘要经典并行计算方案介绍。OPENMP技术详细介绍。MPI技术详细介绍。NV集合通信NCCL 技术介绍。MPIMPI(MPI是一个标准,有不同的具体实现,比如MPICH等)是多主机联网协作进行并行计算的工具,当然也可以用于单主机上多核/多CPU的并行计算,不过效率低。它能协调多台主机间的并行计算,因此并行规模上的可伸缩性很强,能在从个人电脑到世界TOP10的超级计算机上使用。缺点是使用进程间通信的方式协调并行计算,这导致并行效率较低、内存开销大、不直观、编程麻烦。OpenMP

2020-12-19 11:50:26 333 1

原创 实时深度学习的推理加速

作者 Yanchen 毕业于普林斯顿大学机器学习方向,现就职于微软Redmond总部,从事大规模分布式机器学习和企业级AI研发工作。在该篇文章中,作者介绍了实时深度学习的推理加速和持续性训练。引言深度学习变革了许多计算机视觉和自然语言处理(NLP)领域内的任务,它为越来越多的消费者和工业产品提供更强大的智能,并潜在地影响了人们在日常经验和工业实践上的标准流程。从理论上来说,深度学习和其他基于统计机器学习方法的自动化系统十分类似,它们都可以采用两个过程描述。首先,深度神经网络(DNN)模型明确地指向为问题

2020-12-18 06:25:38 256

原创 深度学习训练加速--分布式

一、内部方法网络结构的选择比如 CNN 与 RNN,前者更适合并行架构优化算法的改进:动量、自适应学习率减少参数规模比如使用 GRU 代替 LSTM参数初始化Batch Normalizationmini-batch 的调整二、外部方法GPU 加速数据并行模型并行混合数据并行与模型并行CPU 集群GPU 集群如下图所示(如借用的)这里重点讲解外部加速方法,旨在阐述训练大规模深度学习模型时的分布式计算思想:具体来讲:首先,介绍了分布式计算的基本概念,以及分布式计

2020-12-18 06:24:35 145

原创 基于电力行业的智能读表系统 -- 算法设计

目录前言前言在变电站表计示数识读中,对表计的读取需要经过表计整体目标检测及二次对准、表盘目标检测及示数读取两个阶段。原来,主要是采用基于传统人工设计特征的图像处理方法实现表计的目标匹配和轮廓检测。由于这些方法只能实现浅层特征的提取,在应用的过程中容易受到图像背景、环境光照、拍摄角度等因素的影响,分类错误率较高。此外,样本量的增加对此类方法的作用也不大,大量深层特征无法被挖掘并用于提升算法的性能。比如说,背景特征难区分、类似区域易误检、环境光线影响检测准确率、现场干扰(如水珠)。如下图所示(如有所借用,请

2020-11-20 14:49:55 232 1

原创 前向推理,合并Conv层与BN层

前言为何想到这,为何将caffe模型的合并,在这里源于对海思35XX系列开发板前向推理优化的原因。我是用darknet训练的yolo模型,转为caffemodel(darknet转caffemodel,之前我也写的博文代码。讲解以后也会好好补充完,代码先上,便于先用起来再说),然后在用RuyiStudio转为.wk模型,出于这个原因,我就想能不能做到算子融合,提升前向推理的速度,那么就有了这个文章,同时这个思路可以使用到其他的工业应用上。注意python是用的python3.x版本。合并Conv层与

2020-11-20 10:16:30 359

原创 深度学习模型压缩加速

前言智慧物流是“互联网+”高效物流的重要内容,以智能化技术使物流具有学习、感知、思考、决策等能力,深度学习被大量用于智慧物流。本课程主要分为3个模块:基于深度学习的智慧物流发展状况及应用深度学习模型压缩加速原理和方法深度学习移动端开源框架介绍及部署实例技能进阶:GitHub项目《深度学习500问》深度学习模型压缩加速原理和方法...

2020-11-19 14:47:01 350 1

原创 移动平台模型裁剪与优化的技术

前言移动平台开发的基础原理与架构设计基础 AI 与移动平台开发核心学习路径掌握核心模型裁剪与优化的工程方法基于优化的TensorFlow Lite的落地案例移动端机器学习移动平台包含的范围移动电话平板电脑可穿戴设备智能手环、智能手环、智能眼镜、智能腰带嵌入式设备:树莓派边缘计算节点边缘计算基本概念在边缘测发起应用就近提供服务更快响应用户实时、智能、安全与隐私本质在本地完成计算而不交给云端处理确保处理稳定,降低云端的工作负载面临的挑战传输带宽硬件性能与

2020-11-16 15:41:27 278

原创 行业博文计划

设备巡检方案即app部署模型(安装)输电线路变电站智能管控平台(web端的实现)表计读数在端侧部署

2020-11-12 16:50:03 66

原创 数据结构与算法 -- 树与树算法

目录树树的概念树的存储与表示常见的一些树的应用场景二叉树二叉树的概念二叉树的性质(特性)二叉树的实现二叉树添加结点二叉树的遍历广度优先遍历(层次遍历)深度优先遍历二叉树由遍历确定一个树树二维树的概念树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由n(n>=1)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:每个节点有零个或多个子节

2020-11-12 16:25:24 61

原创 数据结构与算法 -- 排序与搜索

目录前言排序与搜索一、 冒泡排序分析与实现时间复杂度二、选择排序概念分析与实现时间复杂度三、插入算法概念分析与实现时间复杂度四、希尔排序分析实现时间复杂度五、快速排序概念分析时间复杂度六、归并排序时间复杂度常见排序算法效率比较七、搜索二分查找前言之前都是讲的数据结构部分,这里开始讲算法部分。排序与搜索排序算法的稳定性稳定性:稳定排序算法会让原本有相等键值的纪录维持相对次序。也就是如果一个排序算法是稳定的,当有两个相等键值的纪录R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之

2020-11-12 14:03:17 84 1

原创 数据结构与算法 -- 栈与队列

关注栈与队列的操作,不关注它的存放。线性表(顺序表与链表)描述的是数据的存放。栈和队列描述的操作。栈和队列是对顺序表和链表的二次开发!栈与队列的概念栈栈(stack),有些地方称为堆栈,是一种容器,可存入数据元素、访问元素、删除元素,它的特点在于只能允许在容器的一端(称为栈顶端指标,英语:top)进行加入数据(英语:push)和输出数据(英语:pop)的运算。没有了位置概念,保证任何时候可以访问、删除的元素都是此前最后存入的那个元素,确定了一种默认的访问顺序。由于栈数据结构只允许在一端进行操作

2020-11-11 11:58:29 38

原创 数据结构与算法 -- 链表

目录前言单向链表单链表的ADT模型Python中变量标识的本质单链表及结点的定义代码单链表与顺序表的对比单向循环链表遍历和求长度链表扩展双向链表前言链表的提出链表与顺序表的区别:顺序表的特点:要求存储空间必须连续的,在扩充数据的时候,一旦存储空间不够的情况下,就需要涉及到动态的改变。换言之,顺序表的构建需要预先知道数据大小来申请连续的存储空间,而在进行扩充时又需要进行数据的搬迁,所以使用起来并不是很灵活。数据区。链表:在扩充数据的时候,原有的数据完全不用变,多一个就增加一个。换言之,链表结构可以

2020-11-11 11:58:07 80

原创 数据结构与算法--顺序表

1、内存、类型本质、连续储存recv内存:计算机的内存是真正用来存放数据,并且直接和CPU打交道的。CPU读取内存。存储单元是内存的基本单位是以一个字节作为索引单位的。一个字节是8位。告诉cpu到哪个位置取数。内存是什么样的模型呢?内存是一个连续的存储空间。对连续的存储的空间中,它是由基本的单元存储到一块的,基本的单位代表的就是一个字节,它把一个字节作为一个标识,一个字节的8位整体会有一个地址的标识。如果你告诉计算机去0XO1去找的时候,计算机能找到这个计算机所标识的0X01的存储空间,一下子能

2020-11-11 11:50:32 89

原创 深度学习高级主题--深度学习架构之飞桨框架的设计思想与二次开发

目录前言设计思想两种编程模式:静态图和动态图前言本章节主要介绍飞桨深度学习框架的底层设计思想,有了这些思想,或者底层运行逻辑的一些了解,这样使用飞桨更会得心应手,可以帮助用户理解飞桨框架的运作过程,以便于在实际业务需求中,更好地完成模型代码编写、调试以及基于飞桨进行二次开发。设计思想一、框架的运行模式飞桨的底层也就是PaddlePaddle的底层是怎么一个运行的逻辑呢?我们可以认为整个神经网络是一个Program。是什么含义呢?其实,要训练一个模型以及用这个模型去做预测,本质上来说,就是一段

2020-11-05 11:30:53 231 1

原创 模型资源之二:各领域的开发套件

如果说PaddleHub提供的是AI任务快速运行方案(POC),飞桨的开发套件则是比PaddleHub提供“更丰富的模型调节”和“领域相关的配套工具”,开发者基于这些开发套件可以实现当前应用场景中的最优方案(State of the Art)。为什么这么说呢?经过前文我们已了解到,PaddleHub属于预训练模型应用工具,集成了最优秀的算法模型,开发者可以快速使用高质量的预训练模型结合Fine-tune API快速完成模型迁移到部署的全流程工作。但是在某些场景下,开发者不仅仅满足于快速运行,而是希望能在开

2020-11-04 09:19:18 73

原创 模型资源之三:模型库介绍

目录模型资源之三:模型库(完整源代码)计算机视觉(PaddleCV)自然语言处理(PaddleNLP)语音(PaddleSpeech)推荐系统(PaddleRec)从模型库中筛选自己需要的模型使用飞桨模型库或在其基础上二次研发的优势一个案例掌握Models的使用方法相关参考链接模型资源之三:模型库(完整源代码)飞桨官方模型库Paddle Models是由飞桨官方开发和维护的深度学习开源算法集合,包括代码、数据集和预训练模型。截至1.8版本,模型库发布了超过100个工业级的深度学习前沿算法和超过200个预

2020-11-04 08:54:43 251 1

原创 模型资源之一:预训练模型应用工具 PaddleHub

目录PaddleHub使用预训练模型和Finetune的工具预训练模型的应用背景多任务学习与迁移学习自监督学习快速使用PaddleHub通过Python代码调用方式 使用PaddleHub通过命令行调用方式 使用PaddleHubPaddleHub提供的预训练模型使用自己的数据Fine-tune PaddleHub预训练模型PaddleHub使用预训练模型和Finetune的工具十行代码能干什么? 相信多数人的答案是可以写个“Hello world”,或者做个简易计算器,本章将告诉你另一个答案,还可以实

2020-11-04 06:17:45 261 1

原创 深度学习高级主题--首场

目录一、为什么要精通深度学习的高级内容二、高级内容包含哪些武器1. 模型资源2. 设计思想与二次研发3. 工业部署4. 飞桨全流程研发工具5. 行业应用与项目案例三、飞桨开源组件使用场景概览1、 框架和全流程工具2、模型资源一、为什么要精通深度学习的高级内容在前面章节中,我们首先学习了神经网络模型的基本知识和使用飞桨编写深度学习模型的方法,再学习了计算机视觉、自然语言处理和推荐系统的模型实现方法。至此,读者完全可胜任各个领域的建模任务。但在人工智能的战场上取得胜利并不容易,我们还将面临如下挑战:需

2020-11-03 16:16:12 766

原创 基于电力行业的智能读表系统--基于RK3399嵌入式设备部署

目录一、需求背景二、系统架构智能云读表系统边缘智能读表系统三、技术方案面临的问题:总体方案目标检测方案语义分割方案四、边缘部署五、总结一、需求背景油田、店里等工矿奇特存在很多传统的机械指针表具。与数字式仪表不同,机械表具无法将表具度数实时发送到监控系统,需要人工进行读数检查。大型的工矿企业需要消耗大量的人力去现场读表巡检,增加了企业的人力成本,巡检周期长、频率低,更是让设备的质检、系统的稳定运行得不到有效保证。如果在非巡检期间表具度数到达异常区域,表具无法发送告警信息,异常无法被很快发现。二、

2020-11-03 14:00:04 487 3

原创 RCNN系列算法优化策略与工业质检案例

目录前言两阶段检测进阶模型介绍两阶段检测进阶模型优化策略工业应用:铝压件质检总结前言两阶段检测进阶模型介绍两阶段检测进阶模型优化策略工业应用:铝压件质检总结

2020-10-25 17:42:53 300

原创 RCNN系列目标检测算法详解

目录前言一、两阶段检测算法发展历程R-CNN ![在这里插入图片描述](https://img-blog.csdnimg.cn/20201023163001392.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1NNRjA1MDQ=,size_16,color_FFFFFF,t_70#pic_center)Fast R-CNNFaster R-CNN

2020-10-25 17:09:24 200

原创 YOLO系列目标检测算法详解

目录前言YOLO发展历程总结前言YOLO发展历程FPPS 帧每秒总结YOLO发展史YOLO(v1):首个单阶段目标检测深度学习模型,将目标检测当作一个单一的回归任务,基于锚框学习“形变”系数YOLOv2:全卷积网络结构、Kmeans聚类anchors,多尺度训练YOLOv3:新骨干网络DarkNet53,多尺度预测YOLOv3检测原理网络:输出特征图H,W维为网格锚框:9个锚框,每个尺度3个预测框:输出特征图C上为预测框信息,5+class_numPaddleD

2020-10-24 15:52:16 1036 1

原创 ubuntu 16.04 用户输入密码后循环重复登陆导致进不去桌面的方法以及tty的U盘挂载实现数据拷贝(英伟达显卡)

由于昨天我的服务器突然显示不显示了,几经排查,是显卡出了问题,谢天谢地,幸亏只是显卡问题,要是硬盘坏了,数据丢失,也真是一个大麻烦,之后就重新换了一个显卡,安装了一个1080ti显卡。总算进入了window系统。由于服务器是双系统,今儿进入ubuntu16.04系统,准备模型转换,悲剧又来了“用户输入密码后循环重复登陆导致进不去桌面”,想到昨天显卡问题,今儿应该就是显卡驱动的问题了吧,果不其然。下面就写写解决方案吧。步骤:在登陆界面按 ctrl+alt+f1进入tty控制台,输入用户名与密码。以下

2020-10-23 12:18:26 167

原创 AnchorFree系列算法详解

目录Anchor-Based方法回顾Anchor Free系列方法简介PaddleDetection实战演练目标检测总结Anchor-Based方法回顾Anchor Free系列方法简介PaddleDetection实战演练目标检测总结

2020-10-23 00:04:12 870 1

原创 YOLO系列优化策略与电力巡检案例

目录前言无人电力巡检低成本部署方案项目背景方案选择项目难点方案选择解决方案实际案例PP-YOLO优化深度解析YOLOv3及优化模型PP-YOLO深度解析PP-YOLO模型结构目标检测模型优化方法PP-YOLO精度提升历程-1YOLOv3-DarkNet53优化Image MixupLabel SmoothSynchronized Batch NormPP-YOLO精度提升历程-2ResNet-DDeformable ConvPP-YOLO精度提升历程-3Drop BlockExponential Movin

2020-10-21 16:48:10 1041 5

原创 python全栈(一)网络通信与服务器之网络通信过程

此为初稿,等待完善,只为了把要写的文章先列出来。

2020-10-16 17:52:44 185

原创 python全栈(一)网络通信与服务器之正则表达式

代码示例:01-判断变量名是否符合要求import redef main(): names = ["age", "_age", "1age", "age1", "a_age", "age_1_", "age!", "a#123", "__________"] for name in names: # ret = re.match(r"[a-zA-Z_][a-zA-Z0-9_]*", name) # ^规定开头 $规定结尾 # python中的match默认是从头开始判断的所以,

2020-10-14 15:36:55 116

原创 python全栈(一)网络通信与服务器之http协议、http服务器-并发服务器

浏览器---->服务器发送的请求格式如下:GET / HTTP/1.1Host: 127.0.0.1:8080Connection: keep-aliveAccept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,/;q=0.8Upgrade-Insecure-Requests: 1User-Agent: Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (K

2020-10-13 10:16:10 370 2

原创 瑞芯微 TB-RK3399Pro -- 开发板环境

本人开发环境PC:ubuntu18.04LSTboard:rk3399pro-Debian10开发环境搭建主要是参照前面写的环境安装内容:(1)PC-Ubuntu 环境安装、 keras 2.2.4 +tensorflow-gpu 1.x 安装(2)在PC-UBUNTU1804 or > version, 安装rknn虚拟环境,模拟rknn实现基本模型的转化、推理、运行(3)rk3399pro板子上刷机(fedora28 -> debian10)双系统开发板介绍1.开机2.

2020-10-09 22:24:49 3349 7

原创 python全栈(一)网络通信与服务器之多任务-协程

代码示例讲解01-自己实现一个可以迭代的对象eg1:import timefrom collections import Iterablefrom collections import Iteratorclass Classmate(object): def __init__(self): self.names = list() def add(self, name): self.names.append(name) def __it

2020-09-30 10:56:57 510

原创 python全栈(一)网络通信与服务器之多任务-进程

将上传一些test的代码:地址后续补上代码示例讲解01-使用进程实现多任务import threadingimport timeimport multiprocessingdef test1(): while True: print("1--------") time.sleep(1)def test2(): while True: print("2--------") time.sleep(1)def

2020-09-30 10:43:14 130

原创 python全栈(一)网络通信与服务器之多任务-线程

代码示例讲解01-没有多任务的程序import timedef sing(): """唱歌 5秒钟""" for i in range(5): print("----正在唱:菊花茶----") time.sleep(1)def dance(): """跳舞 5秒钟""" for i in range(5): print("----正在跳舞----") time.sleep(1)def main()

2020-09-30 10:20:50 96

原创 python全栈(一)网络通信与服务器之网络-tcp

01-使用同一个套接字进行收发数据import socketdef main(): # 创建一个udp套接字 udp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # 获取对方的ip/port dest_ip = input("请输入对方的ip:") dest_port = int(input("请输入对方的port:")) # 从键盘获取数据 send_data = in

2020-09-30 08:25:59 152

原创 python全栈(一)网络通信与服务器之网络-udp

01-socket的基本使用import socketdef main(): # 创建一个udp套接字 udp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # 可以使用套接字收发数据 # udp_socket.sendto("hahahah", 对方的ip以及port) udp_socket.sendto(b"hahahah------1----", ("192.168.33.53", 8

2020-09-29 17:48:27 117

opencv4交叉编译好的库.rar

用于o海思35XX系列开发板,只要安装的交叉编译器arm-himix200-linux,都适用,注意移到开发板/mnt/mtd目录下,并注意用软连接的方式连接到开发板lib下的方式添加opencv路径

2020-04-04

pytorch1.2.0.rar

深度学习框架,gpu版本的pytorch,在python3.5+ cuda10.0 + cudnn7.6+pytorch1.2.0 gpu_torcvision0.4.0

2020-07-30

yolov3_demo.zip

在TB-RK3399Pro运行yolov3实现目标检测的示例代码,大家可以在这上面继续优化,实现更好的效果。代码中有python,C

2020-10-20

精简的opencv4的库libopencv_world.so

用于o海思35XX系列开发板,只要安装的交叉编译器arm-himix200-linux,都适用,这是精简之后的opencv4的库,将其放置到开发板lib目录下,省去了添加opencv路径的麻烦,前提条件是你的开发板的存储空间比较大

2020-04-04

Linux Makefile工程实战教程.zip

该教程介绍Linux环境下开发软件编译Makefile的基础知识、项目构建、一步一步从零开始写一个模拟MP3项目的Makefile。

2020-01-19

VMware-workstation-full-15.5.0-安装软件.rar

VMware-workstation-full-15.5.0-安装软件,虚拟机(Virtual Machine)指通过软件模拟的具有完整硬件系统功能的、运行在一个完全隔离环境中的完整计算机系统。虚拟系统通过生成现有操作系统的全新虚拟镜像,它具有真实windows系统完全一样的功能,进入虚拟系统后,所有操作都是在这个全新的独立的虚拟系统里面进行,可以独立安装运行软件,保存数据,拥有自己的独立桌面,不会对真正的系统产生任何影响 ,而且具有能够在现有系统与虚拟镜像之间灵活切换的一类操作系统。

2020-03-24

python全栈(一)网络通信与服务器之http协议、http服务器-并发服务器的配套html补充

python全栈(一)网络通信与服务器之http协议、http服务器-并发服务器的配套html补充,仅供学习使用,对应的博客链接https://blog.csdn.net/SMF0504/article/details/109045505

2020-10-14

python全栈(一)网络通信与服务器之http协议、http服务器-并发服务器的配套html

python全栈(一)网络通信与服务器之http协议、http服务器-并发服务器的配套html,仅供学习使用,对应的博客链接https://blog.csdn.net/SMF0504/article/details/109045505

2020-10-14

pytorch_1.5.1_cpu.rar

深度学习框架,cpu版本的pytorch,在python3.6+ pytorch1.5.1 cpu_torcvision0.6.1

2020-07-30

一学就会——vim高级教程为c、c++量身定制vim.ppt

vim的高级教程,也是《嵌入式linux应用软件工程师》的提高教程。 专门为c/c++语言量身定制了vim,安装各种各样的插件,提高编写代码的效率。 安装插件只需要执行一个命令即可,简单方便,快速上升。 插件装完后,熟悉各种各样插件的用法即可——包你一学就会。 注意:该教程仅适用于c/c++开发人员,不适合其他语言的

2020-01-13

模式识别与机器学习

模式识别与机器学习,由马春鹏翻译英文原著而来,这本书已经绝版了,也是经典之书,目前没有中文纸质的,只有电子书。

2016-02-18

OpenCV人门教程

Opencv人门教程,视觉图像处理工具,视觉算法库,编程指导,零基础易快速进入状态

2016-02-18

高质量C++/C编程指南

C\C++编程指南

2017-03-20

C语言入门--必须基础17讲-认识C语言.zip

适合没有基础的人群学习C语言,简单的入门教程。帮助小白理解什么是开发,什么是编程。做的很简单,很多细节没有详细讲解,不适合用来深入研究。学了这个,你能理解什么是编程,什么是C语言。

2020-01-13

荪荪的留言板

发表于 2020-01-02 最后回复 2020-07-03

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除