ZOJ 3229 上下界最大流

9 篇文章 0 订阅
5 篇文章 0 订阅


题意比较简单。。


建图时, X为天数, Y为女孩。 二分图的构图方式。。

之后添加源点跟汇点, 再添加附加源点跟汇点。。


先连接 des, src 正无穷的边, 跑无源无汇可行流, 这时候判断流量是否是符合要求的。。


如果符合要求,则 去除掉 s,t这两个点以及连接他们的边, 之后跑 src到des的最大流,把残留的流量压过去,

残留图里剩下的就是最大的方案了。。


注意最终答案是 src 到des的全部残留流量的和。。


//tpl  
//ipqhjjybj_tpl.h  
//header.h  


#include <cstdio>  
#include <cstdlib>  
#include <map>  
#include <set>  
#include <algorithm>  
#include <cstring>  
#include <iostream>  
#include <vector>  
#include <string>  
#include <queue>  
#include <sstream>  
#include <math.h>  
  
#define mp(x,y) make_pair(x,y)  
#define pii pair<int,int>  
#define pLL pair<long long ,long long>  
#define pb(x) push_back(x)  
#define rep(i,j,k) for(int i = j; i < k;i++)  
  
#define MAX(x,a)  x=((x)<(a))?(a):(x)  
#define MIN(x,a)  x=((x)>(a))?(a):(x) 
  
using namespace std;  
  
const int N = 1500;  
int n,m,tot;  
int s,t;  
int sum;  
struct node{  
    int u,v,w,next;  
	int kk;
    node(){}  
    node(int _u,int _v,int _w,int _next){  
        u=_u,v=_v,w=_w,next=_next;  
    }  
}edge[N*500];  
int head[N],cur[N],dis[N];  
int pre[N],gap[N],aug[N];  
const int oo=0x3f3f3f3f;  
void addEdge(int u,int v,int w,int _zz){  
    edge[tot]=node(u,v,w,head[u]); 
    head[u]=tot++;  
	
    edge[tot]=node(v,u,0,head[v]);  
	edge[tot].kk = _zz;
    head[v]=tot++;  
}  
  
int SAP(int s,int e,int n){  
    int max_flow=0,v,u=s;  
    int id,mindis;  
    aug[s]=oo;  
    pre[s]=-1;  
    memset(dis,0,sizeof(dis));  
    memset(gap,0,sizeof(gap));  
    gap[0]=n;  
  
    for(int i=0;i <= n;i++)  
        cur[i]=head[i];  
  
    while(dis[s]<n){  
        if(u==e){  
            max_flow += aug[e];  
            for(v=pre[e]; v!=-1; v=pre[v]){  
                int ed=cur[v];  
                edge[ed].w -= aug[e];  
                edge[ed^1].w += aug[e];  
                aug[v]-=aug[e];  
                if(edge[ed].w==0) u=v;  
            }  
        }  
        bool flag=false;  
        for(id=cur[u]; id!=-1;id=edge[id].next){  
            v=edge[id].v;  
            if(edge[id].w > 0 && dis[u]==dis[v]+1){  
                flag=true;  
                pre[v]=u;  
                cur[u]=id;  
                aug[v]=min(aug[u],edge[id].w);  
                u=v;  
                break;  
            }  
        }  
        if(flag==false){  
            if(--gap[dis[u]] == 0) break;   
            int mindis=n;  
            for(id=head[u]; id!=-1; id=edge[id].next){  
                v=edge[id].v;  
                if(edge[id].w>0 && dis[v] < mindis){  
                    mindis = dis[v];  
                    cur[u]=id;  
                }  
            }  
            dis[u] = mindis + 1;  
            gap[dis[u]]++;  
            if(u!=s)u=pre[u];  
        }  
    }  
    return max_flow;  
}  

int girl[N],day[N];
int in[N];
int fs;
// 二部分
// X 每天  Y 女孩   
int solve(){
	int src = s, des = t;
	s = des+1;t = s+1;
	
	int en0 = tot;
	int max_flow=0;
	rep(i,0,des+1){
		if(in[i]>0) addEdge(s,i,in[i],0),max_flow+=in[i];
		else if(in[i]<0) addEdge(i,t,-in[i],0);
	}
	// SAP(s,t,t+1);
	addEdge(des,src,oo,0);
	int s1 = SAP(s,t,t+1);
	
	if(s1== max_flow){
		rep(i,0,des+1)
			while(head[i]>=en0)
				head[i]=edge[head[i]].next;
		SAP(src,des,des+1);
		int  ret = 0;
		for(int i = head[src];i!=-1;i=edge[i].next)
			ret += edge[i^1].w;
		return ret;
	}else return -1;
}
void print(){
	for(int i = 1;i < fs;i+=2)
		printf("%d\n",edge[i].w+edge[i].kk);
	// printf("fs=%d\n",fs);
}
int main(){
	while(scanf("%d %d",&n,&m)!=EOF){
		memset(head,-1,sizeof(head));
		memset(in,0,sizeof(in));
		s = sum = tot = 0; 
		t = n+m+1;
		rep(i,1,m+1)scanf("%d",girl+i);
		rep(i,1,n+1){
			int nt;
			scanf("%d %d",&nt,&day[i]);
			while(nt--){
				int tar,l,r;
				scanf("%d %d %d",&tar,&l,&r);
				tar++;
				in[tar+n] += l;
				in[i] -= l;
				addEdge(i,tar+n,r-l,l);
			}
		}
		fs = tot;
		rep(i,1,n+1)addEdge(s,i,day[i],0);  
		rep(i,1,m+1)addEdge(n+i,t,oo,0),in[t]+=girl[i],in[n+i]-=girl[i];
		int ans=-1;
		if((ans=solve()) >= 0){
			printf("%d\n",ans);
			print();
		}else printf("-1\n");
		printf("\n");
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值